Crónicas de autores

Juan Andrés Orellana *

Autor invitado por SIIC

Un protocolo de hipoxia in vitro en presencia de 25 mM de glucosa incrementa la muerte astroglial durante la reoxigenación.

EL PAPEL DE LOS HEMICANALES EN LA MUERTE CELULAR DURANTE EL INFARTO CEREBRAL Y DIABETES

Los hemicanales formados por conexina 43 pueden ser un nuevo blanco terapéutico para reducir la muerte celular luego de un infarto cerebral, particularmente durante condiciones hiperglucémicas.

*Juan Andrés Orellana
describe para SIIC los aspectos relevantes de su trabajo
HYPOXIA IN HIGH GLUCOSE FOLLOWED BY REOXYGENATION IN NORMAL GLUCOSE REDUCES THE VIABILITY OF CORTICAL ASTROCYTES THROUGH INCREASED PERMEABILITY OF CONNEXIN 43 HEMICHANNELS
Glia,
58(3):329-343 Feb, 2010

Esta revista, clasificada por SIIC Data Bases, integra el acervo bibliográfico
de la Biblioteca Biomédica (BB) SIIC.

Institución principal de la investigación
*Pontificia Universidad Católica de Chile, Santiago, Chile
Imprimir nota
Referencias bibliográficas
1. Anderson KM, Tsui P, Guinan P, Rubenstein M. The proliferative response of hela cells to 2-deoxy-D-glucose under hypoxic or anoxic conditions: An analogue for studying some properties of in vivo solid cancers. Anticancer Res 26:4155-4162, 2006.
2. Benjelloun N, Joly LM, Palmier B, Plotkine M, Charriaut-Marlangue C. Apoptotic mitochondrial pathway in neurones and astrocytes after neonatal hypoxia-ischaemia in the rat brain. Neuropathol Appl Neurobiol 29:350-360, 2003.
3. Bondarenko A, Chesler M. Rapid astrocyte death induced by transient hypoxia, acidosis, and extracellular ion shifts. Glia 34:134-142, 2001.
4. Contreras JE, Sáez JC, Bukauskas FF, Bennett MV. Gating and regulation of connexin 43 (Cx43) hemichannels. Proc Natl Acad Sci USA 100:11388-11393, 2003.
5. Costa G, Pereira T, Neto AM, Cristovao AJ, Ambrosio AF, Santos PF. High glucose changes extracellular adenosine triphosphate levels in rat retinal cultures. J Neurosci Res 87:1375-1380, 2008.
6. Cronberg T, Rytter A, Asztely F, Soder A, Wieloch T. Glucose but not lactate in combination with acidosis aggravates ischemic neuronal death in vitro. Stroke 35:753-757, 2004.
7. Cruciani V, Mikalsen SO. The connexin gene family in mammals. Biol Chem 386:325-332, 2005.
8. Choi DW, Maulucci-Gedde M, Kriegstein AR. Glutamate neurotoxicity in cortical cell culture. J Neurosci 7:357-368, 1987.
9. Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: An integrated view. Trends Neurosci 22:391-397, 1999.
10. Evans WH, Leybaert L. Mimetic peptides as blockers of connexin channel-facilitated intercellular communication. Cell Commun Adhes 14:265-273, 2007.
11. Fields RD, Stevens-Graham B. New insights into neuron-glia communication. Science 298:556-562, 2002.
12. Gaietta G, Deerinck TJ, Adams SR, Bouwer J, Tour O, Laird DW, Sosinsky GE, Tsien RY, Ellisman MH. Multicolor and electron microscopic imaging of connexin trafficking. Science 296:503-507, 2002.
13. Giaume C, Kirchhoff F, Matute C, Reichenbach A, Verkhratsky A. Glia: The fulcrum of brain diseases. Cell Death Differ 14:1324-1335, 2007.
14. Gidday JM. Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci 7:437-448, 2006.
15. Goldberg MP, Choi DW. Combined oxygen and glucose deprivation in cortical cell culture: Calcium-dependent and calcium-independent mechanisms of neuronal injury. J Neurosci 13:3510-3524, 1993.
16. Guyton KZ, Liu Y, Gorospe M, Xu Q, Holbrook NJ. Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury. J Biol Chem 271:4138-4142, 1996.
17. Huang Y, Grinspan JB, Abrams CK, Scherer SS. Pannexin1 is expressed by neurons and glia but does not form functional gap junctions. Glia 55:46-56, 2007.
18. Kagansky N, Levy S, Knobler H. The role of hyperglycemia in acute stroke. Arch Neurol 58:1209-1212, 2001.
19. Kondo RP, Wang SY, John SA, Weiss JN, Goldhaber JI. Metabolic inhibition activates a non-selective current through connexin hemichannels in isolated ventricular myocytes. J Mol Cell Cardiol 32:1859-1872, 2000.
20. Lin B, Busto R, Globus MY, Martinez E, Ginsberg MD. Brain temperature modulations during global ischemia fail to influence extracellular lactate levels in rats. Stroke 26:1634-1638, 1995.
21. Martínez AD, Sáez JC. Regulation of astrocyte gap junctions by hypoxia-reoxygenation. Brain Res Brain Res Rev 32:250-258, 2000.
22. Mu D, Zhang W, Chu D, Liu T, Xie Y, Fu E, Jin F. The role of calcium, P38 MAPK in dihydroartemisinin-induced apoptosis of lung cancer PC-14 cells. Cancer Chemother Pharmacol 61:639-645, 2008.
23. Muranyi M, Ding C, He Q, Lin Y, Li PA. Streptozotocin-induced diabetes causes astrocyte death after ischemia and reperfusion injury. Diabetes 55:349-355, 2006.
24. Myers RE, Yamaguchi S. Nervous system effects of cardiac arrest in monkeys. Preservation of vision. Arch Neurol 34:65-74, 1977.
25. Orellana JA, Sáez PJ, Shoji KF, Schalper KA, Palacios-Prado N, Velarde V, Giaume C, Bennett MV, Sáez JC. Modulation of brain hemichannels and gap junction channels by pro-inflammatory agents and their possible role in neurodegeneration. Antioxid Redox Signal 11:369-399, 2009.
26. Pekny M, Nilsson M. Astrocyte activation and reactive gliosis. Glia 50:427-434, 2005.
27. Pelegrin P, Surprenant A. Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J 25:5071-5082, 2006.
28. Peuchen S, Duchen MR, Clark JB. Energy metabolism of adult astrocytes in vitro. Neuroscience 71:855-870, 1996.
29. Piehl M, Lehmann C, Gumpert A, Denizot JP, Segretain D, Falk MM. Internalization of large double-membrane intercellular vesicles by a clathrin-dependent endocytic process. Mol Biol Cell 18:337-347, 2007.
30. Pringle AK, Iannotti F, Wilde GJ, Chad JE, Seeley PJ, Sundstrom LE. Neuroprotection by both NMDA and non-NMDA receptor antagonists in in vitro ischemia. Brain Res 755:36-46, 1997.
31. Retamal MA, Cortés CJ, Reuss L, Bennett MV, Sáez JC. S-nitrosylation and permeation through connexin 43 hemichannels in astrocytes: Induction by oxidant stress and reversal by reducing agents. Proc Natl Acad Sci USA 103:4475-4480, 2006.
32. Retamal MA, Froger N, Palacios-Prado N, Ezan P, Sáez PJ, Sáez JC, Giaume C. Cx43 hemichannels and gap junction channels in astrocytes are regulated oppositely by proinflammatory cytokines released from activated microglia. J Neurosci 27:13781-1392, 2007.
33. Retamal MA, Schalper KA, Shoji KF, Bennett MV, Sáez JC. Opening of connexin 43 hemichannels is increased by lowering intracellular redox potential. Proc Natl Acad Sci USA 104:8322-8327, 2007.
34. Rytter A, Cronberg T, Asztely F, Nemali S, Wieloch T. Mouse hippocampal organotypic tissue cultures exposed to in vitro ischemia show selective and delayed CA1 damage that is aggravated by glucose. J Cereb Blood Flow Metab 23:23-33, 2003.
35. Sáez JC, Berthoud VM,Brañes MC, Martínez AD, Beyer EC. Plasma membrane channels formed by connexins: Their regulation and functions. Physiol Rev 83:1359-1400, 2003.
36. Sáez JC, Retamal MA, Basilio D, Bukauskas FF, Bennett MV. Connexin-based gap junction hemichannels: Gating mechanisms. Biochim Biophys Acta 1711:215-224, 2005.
37. Schalper KA, Palacios-Prado N, Retamal MA, Shoji KF, Martínez AD, Sáez JC. Connexin hemichannel composition determines the FGF-1-induced membrane permeability and free [Ca2+]i responses. Mol Biol Cell 19:3501-3513, 2008.
38. Silver IA, Deas J, Erecinska M. Ion homeostasis in brain cells: Differences in intracellular ion responses to energy limitation between cultured neurons and glial cells. Neuroscience 78:589-601, 1997.
39. Silverman W, Locovei S, Dahl GP. Probenecid, a gout remedy, inhibits pannexin 1 channels. Am J Physiol Cell Physiol 295:C761-C767, 2008.
40. Simard M, Nedergaard M. The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 129:877-896, 2004.
41. Sugawara T, Lewen A, Noshita N, Gasche Y, Chan PH. Effects of global ischemia duration on neuronal, astroglial, oligodendroglial, and microglial reactions in the vulnerable hippocampal CA1 subregion in rats. J Neurotrauma 19:85-98, 2002.
42. Tabernero A, Medina JM, Giaume C. Glucose metabolism and proliferation in glia: Role of astrocytic gap junctions. J Neurochem 99:1049-1061, 2006.
43. Theis M, Mas C, Doring B, Kruger O, Herrera P, Meda P, Willecke K. General and conditional replacement of connexin43-coding DNA by a lacZ reporter gene for cell-autonomous analysis of expression. Cell Commun Adhes 8:383-386, 2001.
44. VanSlyke JK, Musil LS. Cytosolic stress reduces degradation of connexin43 internalized from the cell surface and enhances gap junction formation and function. Mol Biol Cell 16:5247-5257, 2005.
45. Walton M, Connor B, Lawlor P, Young D, Sirimanne E, Gluckman P, Cole G, Dragunow M. Neuronal death and survival in two models of hypoxic-ischemic brain damage. Brain Res Brain Res Rev 29:137-168, 1999.
46. Wang J, Ma M, Locovei S, Keane RW, Dahl G. Modulation of membrane channel currents by gap junction protein mimetic peptides: Size matters. Am J Physiol Cell Physiol 293:C1112-C1119, 2007.


ua40317