Crónicas de autores

Carina De Fátima Rodrigues *

Autora invitada por SIIC


Neste estudo verificou-se que a variante do gene UGT1A1 c. −3279T>G, está também associada a hiperbilirrubinémia, no entanto a variante c.−41_−40dupTA parece ter mais impacto na actividade da enzima. Nos doentes com síndroma de Gilbert foram detetadas na região codificante duas variantes já descritas na literatura e 3 novas alterações, em heterozigotia, classificadas como deletérias pela análise in sílico.

*Carina De Fátima Rodrigues
describe para SIIC los aspectos relevantes de su trabajo
Blood Cells, Molecules & Diseases,
48(3):166-172 Mar, 2012

Esta revista, clasificada por SIIC Data Bases, integra el acervo bibliográfico
de la Biblioteca Biomédica (BB) SIIC.

Institución principal de la investigación
*Instituto Politécnico de Bragança, Bragança, Portugal
Imprimir nota
Referencias bibliográficas
[1] C. Goresky, E.R. Gordon, E.A. Shaffer, et al., Definition of a conjugation of dysfunction in Gilbert's syndrome: studies of the handling of bilirubin loads and of the pattern of bilirubin conjugates secreted in bile, Clin Sci Mol Med. 55 (1978) 63-71.

[2] S. Sinafi, D. Clarke, B. Burchell, Investigation of the substrate specificity of a cloned expressed human bilirubin UDP-glucuronosyltransferase: UDP-sugar specificity and involvement in steroid and xenobiotic glucuronidation, Biochem. J. 303 (1994) 233-40.

[3] C.P. Strassburg, S. Kalthoff, U. Ehmer, Variability and function of family 1 uridine-5'-diphosphate glucuronosyltransferases (UGT1A), Crit. Rev. Clin Lab Sci. 45 (2008) 485-530.

[4] M.A. Malfatti, E.A. Ubick, J.S. Felton, The impact of glucuronidation on the bioactivation and DNA adduction of the cooked-food carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine in vivo, Carcinogenesis. 26 (2005) 2019-28.

[5] S. Gantla, C.T. Bakker, B. Deocharan, et al., Splice-site mutations: a novel genetic mechanism of Crigler-Najjar syndrome type1, Am J Hum Genet. 62 (1998) 585-92.

[6] A. Iolascon, A. Meloni, B. Coppola, M.C. Rosatelli, Crigler-Najjar syndrome type II resulting from three different mutations in the bilirubin uridine 5'-diphosphate-glucuronosyltransferase (UGT1A1) gene, J Med Genet. 37 (2000) 712-713.

[7] E. Costa, Hematologically important mutations: Bilirubin UDP-glucuronosyltransferase gene mutations in Gilbert and Crigler-Najjar syndromes, Blood Cell Mol. Dis. 36 (2006) 77-80.

[8] Q.H. Gong, J.W. Cho, T. Huang, et al., Thirteen UDPglucuronosyltransferase genes are encoded at the human UGT1 gene complex locus, Pharmacogenetics 11 (2001) 357-368.

[9] P.J. Bosma, J.R. Chowdhury, C. Bakker, et al., The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert‘s syndrome, N. Engl. J. Med. 333 (1995) 1171-1185.

[10] E. Beutler, T. Gelbart, A. Bemina, Racial variability in the UDPglucuronosyltransferase 1 (UGT1A1) promoter: a balanced polymorphism for regulation of bilirubin metabolism?, Proc. Nat.l Acad. Sci. USA. 95 (1998) 8170-8174.

[11] Y. Maruo, C. D'Addario, A. Mori, et al., Racial variability in haplotype frequencies of UGT1A1 and glucuronidation activity of a novel single nucleotide, Drug. Metab. Dispos. 33 (2005) 458-465.

[12] Y. Maruo, C. D'Addario, A. Mori, et al., Inheritance of hyperbilirubinemia: evidence for a major autosomal recessive gene, Dig. Liver Dis. 39 (2007) 351-355.

[13] J. Sugatani, K. Yamakawa, K. Yoshinari, et al., Identification of a defect in the UGT1A1 gene promoter and its association with hyperbilirubinemia, Biochem. Biophys. Res. Commun. 292 (2002) 492-497.

[14] Y. Maruo, C. D'Addario, A. Mori, et al., Two linked polymorphic mutations (A(TA)7TAA and T-3279G) of UGT1A1 as the principal cause of Gilbert Syndrome, Hum. Genet. 115 (2004) 525-526.

[15] V. Servedio, M. d'Apolito, N. Maiorano, et al., A polymorphic mutation, c.-3279T>G, in the UGT1A1 promoter is a risk factor for neonatal jaundice in the Malay population, Pediatr. Res. 67 (2010) 401-406.

[16] E. Costa, E. Vieira, R. dos Santos, The polymorphism c.-3279T>G in the phenobarbital-responsive enhancer module of the bilirubin UDP-glucuronosyltransferase gene is associated with Gilbert syndrome, Clin. Chem. 51 (2005) 2204-2206.

[17] M. Sanpietro, A. Iolascon, Molecular pathology of Crigler-Najjar type I and II and Gilbert's syndromes, Haematologica. 84 (1999) 150-157.

[18] D.G. Nathan, S.H. Orking, N. Oski’s, Haematology of Infancy and Childhood, 5th edition, RWB Sanders Company, Philadelphia, 1998, pp. 103-146.

[19] S.A. Miller, D.D. Dykes, H.F..Polesky, A simple salting out procedure for extracting DNA from human nucleated cells, Nucleic Acids Res. 16 (1988) 1215.

[20] E. Costa, E. Vieira, M. Martins, et al., Analysis of the UDP-glucuronosyltransferase gene in Portuguese patients with a clinical diagnosis of Gilbert and Crigler-Najjar syndromes, Blood Cells Mol. Dis. 36 (2006) 91-97.

[21] J.D. Bancroft, B. Kreamer, G.R. Gourley, Gilbert syndrome accelerates development of neonatal jaundice, J. Pediat. 132 (1998) 656-660.

[22] V Ramensky, P. Bork, S. Sunyaev, Human non-synonymous SNPs: server and survey, Nucleic Acids Res. 30 (2002) 3894-3900.

[23] P.C. Ng, S. Henikoff, SIFT. Predicting amino acid changes that affect protein function, Nucleic Acids Res. 31 (2003) 3812-3814.

[24] S.V. Tavtigian, A.M. Deffenbaugh, L. Yin, et al., Comprehensive statistical study of 452 BRCA1 missense substitutions with classification of eight recurrent substitutions as neutral, J. Med. Genet. 43 (2006) 295-305.

[25] R. Grantham, Amino acid difference formula to help explain protein evolution, Science 185 (1985) 862-864.

[26] S. Henikoff, J.G. Henikoff, Position-based sequence weights, J. Mol. Biol. 243 (1994) 574-578.

[27] T.R. Gaunt, S. Rodriguez, I.N. Day, Cubic exact solutions for the estimation of pairwise haplotype frequencies: implications for linkage disequilibrium analyses and a web tool ‘CubeX’, BMC Bioinf. 8 (2007) 428-436.

[28] T. Erps, J.K. Ritter, J.H. Hersh, et al., Identification of two single base substitutions in the UGT1 gene locus, which abolish bilirubin uridine diphosphate glucuronosyltransferase activity in vitro, J. Clin. Invest. 93 (1994) 564-570.

[29] C. Rodrigues, E. Costa, E. Vieira, et al., Bilirubin is mainly dependent on UGT1A1 polymorphisms, hemoglobin, fasting time and body mass index, Am. J. Med. Sci. (2011) in press.

[30] K. Borucki, C. Weikert, E. Fisher, et al., Haplotypes in the UGT1A1 gene and their role as genetic determinants of bilirubin concentration in healthy German volunteers, Clin. Biochem. 42 (2009) 1635-1641.

[31] F. Innocenti, C. Grimsley, S. Das, J et al., Haplotype structure of the UDP-glucuronosyltransferase 1A1 promoter in different ethnic groups, Pharmacogenetics 12 (2002) 725-733.

[32] M. Jirsa, J. Petrasek, L. Vitek, Linkage between A(TA)7TAA and -3279TNG mutations in UGT1A1 is not essential for pathogenesis of Gilbert syndrome, Liver Int. 26 (2006) 1302-1303.
[33] A. Ferraris, G. D'Amato, V. Nobili, et al., Combined test for UGT1A1-3279TNG and A(TA)nTAA polymorphisms best predicts Gilbert's syndrome in Italian pediatric patients, Genet Test. 10 (2006) 121-125.

[34] K. Matsui, Y. Maruo, H. Sato, Y. Takeuchi, Combined effect of regulatory polymorphisms on transcription of UGT1A1 as a cause of Gilbert syndrome, BMC, Gastroenterol. 10 (2010) 57-68.

[35] N. Kaniwa, K. Kurose, H. Jinno, et al., Racial variability in haplotype frequencies of UGT1A1 and glucuronidation activity of a novel single nucleotide polymorphism 686CNT (P229L) found in an African-American, Drug Metab. Dispos. 33 (2005) 458-465.

[36] H. Sato, Y. Adachi, O. Koiwai, The genetic basis of Gilbert's syndrome, Lancet 34 (1996) 557-558.

[37] P. Labrune, A. Myara, J. et al., Association of a homozygous (TA)8 promoter polymorphism and a N400D mutation of UGT1A1 in a child with Crigler-Najjar type II syndrome, Hum. Mutat. 20 (2002) 399-401.

[38] V. Servedio, M. d'Apolito, N. Maiorano, et al., Spectrum of UGT1A1 mutations in Crigler-Najjar (CN) syndrome patients: Identification of twelve novel alleles and genotype-phenotype correlation, Hum. Mutat. 25 (2005) 325-334.

[39] S.V. Tavtigan, M.S. Greenblatt, F. Lesueur, et al., In silico analysis of missense substitutions using sequence-alignment based methods, Hum. Mutat. 29 (2008) 1327-1336.

[40] Y.M. Di, E. Chan, M.Q. Wei, Liu JP, et al., Prediction of deleterious non-synonymous single-nucleotide polymorphisms of human uridine diphosphate glucuronosyltransferase genes, AAPS J. 11 (2009) 469-480.
Otros artículos de Carina De Fátima Rodrigues

C. Rodrigues, E. Costa, E. Vieira, et al., in press. Bilirubin is mainly dependent on UGT1A1 polymorphisms, hemoglobin, fasting time and body mass index, Am. J. Med. Sci.Am J Med Sci. 2012(2):114-8.

Para comunicarse con Carina De Fátima Rodrigues mencionar a SIIC como referencia:

Autora invitada
31 de mayo, 2012
Descripción aprobada
6 de julio, 2012
Reedición siicsalud
7 de junio, 2021

Acerca del trabajo completo

Título original en castellano


Acceso a la fuente original
Blood Cells, Molecules & Diseases
Acceso al texto original completo (full text)
Acceso al resumen/abstract original
El artículo se relaciona estrictamente con las especialidades de siicsalud