Crónicas de autores

Marcelo Bernabé Méndez *

Autor invitado por SIIC


ADAPTACION BACTERIANA AL ESTRES POR FRIO

Nuevos roles de factores de transcripción para la adaptación bacteriana al frío.

*Marcelo Bernabé Méndez
describe para SIIC los aspectos relevantes de su trabajo
NOVEL ROLES OF THE MASTER TRANSCRIPTION FACTORS SPO0A AND SIGMA B FOR SURVIVAL AND SPORULATION OF BACILLUS SUBTILIS AT LOW GROWTH TEMPERATURE
Journal of Bacteriology,
186(4):989-1000 Feb, 2004

Esta revista, clasificada por SIIC Data Bases, integra el acervo bibliográfico
de la Biblioteca Biomédica (BB) SIIC.

Institución principal de la investigación
*Departamento de Microbiología Facultad de Ciencias Bioquímicas y Farmacéuticas Rosario, Argentina, Rosario, Argentina
Profundizar
Imprimir nota
Comprar este artículo
Otros artículos escogidos
Referencias bibliográficas
Aguilar, P. S., J. E. Cronan, Jr., and D. de Mendoza. 1998. A Bacillus subtilis gene induced by cold shock encodes a membrane phospholipid desaturase. J. Bacteriol. 180:2194-2200. Aguilar, P. S., A. M. Hernandez-Arriaga, L. E. Cybulski, A. C. Erazo, and D. de Mendoza. 2001. Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. EMBO J. 20:1681-1691. Arabolaza, A. L., A. Nakamura, M. E. Pedrido, L. Martelotto, L. Orsaria, and R. Grau. 2003. Characterization of a novel inhibitory feedback of the anti-anti-sigma SpoIIAA on Spo0A activation during development in Bacillus subtilis. Mol. Microbiol. 47:1251-1263. Asai, K., F. Kawamura, H. Yoshikawa, and H. Takahashi. 1995. Expression of kinA and accumulation of Sigma H at the onset of sporulation in Bacillus subtilis. J. Bacteriol. 177:6679-6683. Becker, L. A., S. N. Evans, R. W. Hutkins, and A. K. Benson. 2000. Role of Sigma B in adaptation of Listeria monocytogenes to growth to low temperature. J. Bacteriol. 182:7083-7087. Beckering, C. L., L. Steil, M. H. W. Weber, U. Volker, and M. A. Marahiel. 2002. Genomewide transcriptional analysis of the cold shock response in Bacillus subtilis. J. Bacteriol. 184: 6395-6402. Benson, A. K., and W. G. Haldenwang. 1993. Regulation of Sigma B levels and activity in Bacillus subtilis. J. Bacteriol. 175:2347-2356. Boylan, S. A., A. R. Redfield, M. S. Brody, and C. W. Price. 1993. Stress-induced activation of the Sigma B transcription factor of Bacillus subtilis. J. Bacteriol. 175:7931-7937. Brigulla, M., Hoffmann, T., Krisp, A., Völker, A., Bremer, E., and U. Völker. 2003. Chill induction of the SigB-dependent general stress response in Bacillus subtilis and its contribution to low-temperature adaptation. J. Bacteriol. 185:4305-4314. De Mendoza, D., R., Grau, and J. E. Cronan Jr. 1993. Biosynthesis and function of membrane lipids, p.411-421. In A. Sonenshein, J. A. Hoch, and R. Losick (ed.), Bacillus subtilis and other gram-positive bacteria: biochemistry, physiology, and molecular genetics. American Society for Microbiology, Washignton, D.C. Gaidenko, T. A., and C. W. Price. 1998. General stress transcription factor Sigma B and sporulation transcription factor Sigma H each contribute o survival of Bacillus subtilis under extreme growth conditions. J. Bacteriol. 180:3730-3733. Gardan, R., O., Duché, Leroy-Sétrin, the european Listeria monocytogenes consortium, and J. Labadie. 2003. Role of ctc from Listeria monocytogenes in osmotolerance. Appl. Environ. Microbiol. 69:154-161. Grau, R. 1994. Regulation of fatty acid synthesis during cold-adaptation and sporulation in Bacillus subtilis. Ph.D. Thesis. Rosario University, Argentina. Grau, R., and D. de Mendoza. 1993. Regulation of the synthesis of unsaturated fatty acid by growth temperature in Bacillus subtilis. Mol. Microbiol. 8:535-542. Grau, R., D. Gardiol, G. Glikin, and D. de Mendoza. 1994. DNA supercoiling and thermal regulation of unsaturated fatty acid synthesis in Bacillus subtilis. Mol. Microbiol. 11:933-941. Graumann, P., and M. A. Marahiel. 1999. Cold shock response in Bacillus subtilis. J. Mol. Microbiol. Biotechnol. 1:203-209. Graumann, P., K. Schröder, R. Schmid, and M. A. Marahiel. 1996. Cold shock stress-induced proteins in Bacillus subtilis. J. Bacteriol. 178:4611-4619. Graumann, P., T. M. Wendrich, M. H. Weber, K. Schröder, and M. A. Marahiel. 1997. A family of cold shock proteins in Bacillus subtilis is essential for cellular growth and for efficient protein synthesis at optimal and low temperatures. Mol. Microbiol. 25:741-756. Grossman, A., and R. Losick. 1988. Extracellular control of spore formation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 85:4369-4373. Haldenwang, W. G., and R. Losick. 1980. A novel RNA polymerase sigma factor from Bacillus subtilis. Proc. Natl. Acad. Sci. USA 77:7000-7005. Hamon, M. A., and B. A. Lazazzera. 2001. The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis. Mol. Microbiol. 42:1199-1209. Hecker, M., W. Schumann, and U. Völker. 1996. Heat shock and general stress response in Bacillus subtilis. Mol. Microbiol. 19:417-428. Hecker, M. and U. Völker. 1998. Non-specific, general and multiple stress resistance of growth-restricted Bacillus subtilis cells by the expression of the Sigma B regulon. Mol. Microbiol 29:1129-1136. Ireton, K., D. Z. Rudner, K. J. Siranosian, and A. Grossman. 1993. Integration of multiple developmental signals in Bacillus subtilis through the Spo0A transcription factor. Genes Dev. 7:283-294. Jiang, M., R. Grau, and M. Perego. 20002. Differential processing of propeptide inhibitors of Rap phosphatases in Bacillus subtilis. J. Bacteriol. 182:303-310. Krispin, O., and R. Allmansberger. 1995. Changes in DNA supertwist as a response of Bacillus subtilis towards different kinds of stress. FEMS Microbiol. Lett. 134:129-135. Menez, J., R. H.Buckingham, M., de Zamaroczy, and C. Karmazyn Campelli. 2002. Peptydil-tRNA hydrolase in Bacillus subtilis, encoded by spoVC, is essential to vegetative growth, whereas the homologous enzyme in Saccharomyces cerevisiae is dispensable. Mol Microbiol. 45:123-129. Nichols, D. S., P. D. Nichols, and T. A. McMeekin. 1995. Ecology and physiology of psychrophilic bacteria from Antartic saline lakes and ice-sea. Sci. Prog. 78:311-348. Petersohn, A., M. Brigulla, S. Haas, J. D. Hoheisel, U. Völker, and M. Hecker. 2001. Global analysis of the general stress response of Bacillus subtilis. J. Bacteriol. 183:5617-5631. Piggot, P. J., and J. G. Coote. 1976. Genetics aspects of bacterial endospore formation. Bacteriol Rev. 40:908-962. Piggot, P. J., and R. Losick. 2002. Sporulation genes and intercompartmental regulation, p. 483-518. In A. L. Sonenshein, J. A. Hoch, and R. Losick (ed.), Bacillus subtilis and its closest relatives, American Society for Microbiology, Washignton, D.C. Price, C. W. 2002. General stress response, p.369-384. In A. L. Sonenshein, J. A. Hoch, and R. Losick (ed.), Bacillus subtilis and its closest relatives, American Society for Microbiology, Washignton, D.C. Price, C. W., P. Fawcet, H. Cérémonie, N. Su, C. K. Murphy, and P. Youngman. 2001. Genome-wide analysis of the general stress response in Bacillus subtilis. Mol. Microbiol. 41:757-774. Scott, J. M., and W. G. Haldenwang. 1999. Obg, an essential GTP binding protein of Bacillus subtilis, is necessary for stress activation of transcription factor Sigma B. J. Bacteriol. 181:4653-4660. Scott, J. M., J. Ju Mithcell, and W. G. Haldenwang. 2000. The Bacillus subtilis GTP binding protein Obg and regulators of the Sigma B stress response transcription factor cofractionate with ribosomes. J. Bacteriol. 182:2771-2777. Schujman, G. E., K. Choi, S. Altabe, C. O. Rock, and D. de Mendoza. 2001. Response of Bacillus subtilis to cerulenin and acquisition of resistance. J. Bacteriol. 183:3032-3040. Völker, U., B. Maul, and M. Hecker. 1999. Expression of the Sigma B-dependent general stress regulon confers multiple stress resistance in Bacillus subtilis. J. Bacteriol. 181:3942-3948. Wang, L., R. Grau, M. Perego, J. A. Hoch. 1997. A novel histidine kinase inhibitor regulating development in Bacillus subtilis. Genes Dev. 11:2569-2579. Weber, M. H. W., A. V. Volkov, I. Fricke, M. A. Marahiel, and P. Graumann. 2001. Role of the Bacillus subtilis fatty acid desaturase in membrane adaptation during cold shock. Mol. Microbiol. 39:1321-1329. Weber, M. H., and M. A. Marahiel. 2002. Coping with the cold: the cold shock response in the Gram-positive soil bacterium Bacillus subtilis. Philos. Trans. R. Soc. Lond. Biol. Sci. 357:895-907. Wipat, A., and C. R. Harwood. 1999. The Bacillus subtilis genome sequence: the molecular blueprint of a soil bacterium. FEMS Microbiol. Ecol. 28:1-9. Young, M. 1976. Use of temperature-sensitive mutants to study gene expression during sporulation in Bacillus subtilis. J. Bacteriol. 126:928-936. Zhang, S., J. M., Scott, and W. G. Haldenwang. 2001. Loss of ribosomal protein L11 blocks stress activation of the Bacillus subtilis transcription factor Sigma B. J. Bacteriol. 183:2316-2321.


ua40317
Inicio/Home

Copyright siicsalud © 1997-2024 ISSN siicsalud: 1667-9008