INSUFICIENCIA RENAL AGUDA ASOCIADA CON SEPSIS

(especial para SIIC © Derechos reservados)
Se describe la incidencia de insuficiencia renal aguda en los sujetos sépticos, los factores clínicos y bioquímicos comórbidos, los focos de origen, la necesidad de hemodiálisis, la tasa de mortalidad, la de supervivencia del paciente y de recuperación de la función renal
Autor:
Fernando Lombi
Columnista Experto de SIIC

Institución:
Hospital Británico


Artículos publicados por Fernando Lombi
Coautor
Hernán Trimarchi* 
Hospital Británico, Buenos Aires, Argentina*
Recepción del artículo
28 de Agosto, 2012
Aprobación
10 de Octubre, 2012
Primera edición
23 de Noviembre, 2012
Segunda edición, ampliada y corregida
7 de Junio, 2021

Resumen
La insuficiencia renal aguda asociada con sepsis (IRAS) es un cuadro potencialmente mortal, en especial cuando forma parte del síndrome de disfunción multiorgánica (SDMO). La información con que se cuenta demuestra que la sepsis y el shock séptico son las causas más frecuentes de insuficiencia renal aguda (IRA) en pacientes críticamente enfermos, lo que provoca una alta morbimortalidad. En los últimos años ha cambiado el perfil de los pacientes a los cuales se destinan las terapias de reemplazo renal (TRR) en la IRAS, se trata de pacientes ancianos, con múltiples factores de riesgo y asociados con SDMO. Si bien no existe ventaja alguna en términos de mortalidad entre las terapias continuas y las intermitentes, los datos demostraron que la instauración precoz de TRR mejoraba el pronóstico. Otro punto sin consenso es el de la intensidad de esta terapia. Debido a que la sepsis es un estado hipercatabólico que se acompaña de un gran equilibrio positivo, el aumento en la intensidad de ésta plantea un paradigma racional con el objetivo de atenuar los desequilibrios iniciales. En un estudio prospectivo, observacional y longitudinal sobre 80 pacientes internados en una unidad de cuidados intensivos (UCI), se analizó la evolución de IRA según los valores de creatinina (Cr) al ingreso en pacientes críticos con sepsis grave, y su relación con la mortalidad y demás parámetros de laboratorio. Asimismo, se evaluó la relación de la IRAS y la intensidad de la TRR en estos pacientes. No obstante, recientemente se ha investigado la capacidad de las TRR como terapias inmunomoduladoras o "terapias puente", para que éstas no se limiten sólo a eliminar productos de desecho del metabolismo, sino que permitan además la recuperación de la función renal mientras se mantiene la homeostasis, con el fin de lograr así disminuir la morbimortalidad de estos pacientes.

Palabras clave
injuria, insuficiencia renal aguda, sepsis


Artículo completo

(castellano)
Extensión:  +/-5.82 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
Acute kidney injury (AKI) associated with sepsis is a potentially fatal complication, especially as part of multiorgan dysfunction syndrome (MODS). Evidence shows that sepsis and septic shock are common causes of AKI in critically ill patients, with high morbi-mortality.
In recent years, the profile of septic patients who require renal replacement therapy (RRT) has changed. These patients are elderly and with multiple risk factors and associated MODS. While there is no advantage in terms of mortality between intermittent vs. continuous therapies, the early start of RRT appears to improve prognosis. Another unanswered issue is the lack of consensus on the dose of RRT. Sepsis remains a hypercatabolic state accompanied by a large positive balance and the increase in the intensity of dose RRT is a rational paradigm in order to mitigate the initial metabolic and fluid imbalances.
In a prospective, observational, longitudinal study on 80 patients admitted to our intensive care unit (ICU), due to severe sepsis, we studied the development of AKI using the creatinine (Cr) as a marker and its relationship to mortality and other laboratory parameters. Furthermore, we evaluated the association between the development of infections and the intensity of the TRR delivered to these patients.
However we have assesed, the TRR as a immunomodulatory treatment, working as a "bridge therapy" and not only confined so as to sweep waste catabolic products of metabolism, contributory to the recovery of renal function while maintaining the homeostasis and improving reducing morbidity and mortality score of these patients.

Key words
acute kidney injury, injury, sepsis


Clasificación en siicsalud
Artículos originales > Expertos de Iberoamérica >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Cuidados Intensivos, Nefrología y Medio Interno
Relacionadas: Bioquímica, Diagnóstico por Laboratorio, Infectología, Medicina Interna



Comprar este artículo
Extensión: 5.82 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Enviar correspondencia a:
Hernán Trimarchi, Hospital Británico, 1280AEB, Perdriel 74, Buenos Aires, Argentina
Bibliografía del artículo
1. Kellum JA, Levin N, Bouman C, et al. Developing a consensus classification system for acute renal failure. Curr Opin Crit Care 8:509-514, 2002.
2. Bellomo R, Ronco C, Kellum JA, et al. Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 8:R204-R212, 2004.
3. Mehta RL, Kellum JA, Shah SV, et al. Acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 11:R31, 2007.
4. Chertow GM, et al. Mortality after acute renal failure: models for prognostic stratification and risk adjustment. Kidney Int 70:1120-1126, 2006.
5. Ronco C, Kellum JA, Bellomo R, House A. Potential interventions in sepsis related acute kidney injury. Clin J Am Soc Nephrol 3:531-544, 2008.
6. ACCP-SCCM Consensus Conference: Definitions of sepsis and multiple organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 1992; 20: 864-74.
7. Nash K, Hafeez A, Hou S. Hospital-acquired renal insufficiency. Am J Kidney Dis 39:930-936, 2002.
8. Hoste EA, Clermont G, Kersten A, et al. RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: A cohort analysis. Crit Care 10:R73, 2006.
9. Mehta RL, Pascual MT, Soroko S, et al. Spectrum of acute renal failure in the intensive care unit: The PICARD experience. Kidney international 66:1613-1621, 2004.
10. Uchino S, Kellum JA, Bellomo R, et al. Acute renal failure in critically ill patients: A multinational, multicenter study. Jama 294:813-818, 2005.
11. Uchino S, Bellomo R, Goldsmith D, et al. An assessment of the RIFLE criteria for acute renal failure in hospitalized patients. Critical care medicine 34:1913-1917, 2006.
12. Ostermann M, Chang RW. Acute kidney injury in the intensive care unit according to RIFLE. Crit Care Med 35:1837-1843, 2007.
13. Metnitz PG, Krenn CG, Steltzer H, et al. Effect of acute renal failure requiring renal replacement therapy on outcome in critically ill patients. Crit Care Med 30:2051-2058, 2002.
14. Liano F, Felipe C, Tenorio MT, et al. Longterm outcome of acute tubular necrosis: A contribution to its natural history. Kidney Int 71:679-686, 2007.
15. Bagshaw SM, Laupland KB, Doig CJ, et al. Prognosis for long-term survival and renal recovery in critically ill patients with severe acute renal failure: A population-based study. Crit Care 9:R700-R709, 2005.
16. Klenzak J, Himmelfarb J. Sepsis and the kidney. Crit Care Clin 21:211-22, 2005.
17. Mehta R.L, Bouchard J, Soroko SB, et al. Program to Improve Care in Acute Renal Disease (PICARD) Study Group. Sepsis as a cause and consequence of acute kidney injury: Program to Improve Care in Acute Renal Disease. Intensive Care Med 37:241-248, 2011.
18. Vaidya VS, Waikar SS, Ferguson MA, Bonventre JV. Urinary Biomarkers for sensitive and specific detection of acute kidney injury in humans. Clin Transl Sci 1:200-208, 2008.
19. Angus DC, Barnato AE, Linde-Zwirble WT, Weissfeld LA, Watson RS, Rickert T, Rubenfeld GD. Use of intensive care at the end of life in the United States: an epidemiologic study. Crit Care Med 32:638-643, 2004.
20. United Nations Department of Economic and Social Affairs Population Division. World Population Ageing: 1950-2050 [online], http://www.un.org/esa/ population/ publications/ worldageing 19502050 (2001).
21. Hsu CY. Where is the epidemic in kidney disease? J Am Soc Nephrol 21:1607-1611, 2010.
22. Murugan R, Karajala-Subramanyam V, Lee M et al. Acute kidney injury in non-severe pneumonia is associated with an increased immune response and lower survival . Kidney Int 77:527-535, 2010.
23. Bull GM, Joekes AM, Lowe KG. Renal function studies in acute tubular necrosis. Clin Sci 9:379-404, 1950.
24. Wan L, Bagshaw SM, Langenberg C, Saotome T, May C, Bellomo R. Pathophysiology of septic acute kidney injury: what do we really know? Crit Care Med 36:198-203, 2008.
25. Jacobs R, Honore PM, Joannes-Boyau O, Boer W, De Regt J, Waele ED, Collin V, Spapen HD. Septic Acute Kidney Injury: The Culprit Is Inflammatory Apoptosis rather than Ischemic Necrosis. Blood Purif 32:262-265, 2011.
26. The VA/NIH Acute Renal Failure Trial Network. Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med 359:7-20, 2008.
27. Trimarchi H, Nozieres C, Cámpolo Girard V, Lombi F, et al. Injuria renal aguda en la sepsis grave. Medicina (Buenos Aires) 69:321-326, 2009.
28. Schiff H, Lang SM, Fischer R. Daily Hemodialysis and the Outcome of Acute Renal Failure. N Engl J Med 346:305-310, 2002.
29. Lewington A, Kanagasundaram S. Clinical Practice Guidelines: ACUTE KIDNEY INJURY. UK Renal Association 5th Edition, 10.4; 2011.
30. The FHN Trial Group In-Center Hemodialysis Six Times per Week versus Three Times per Week. N Engl J Med 363:2287-2300, 2010.
31. Ronco C, Tetta C, Mariano F, Bellomo R, et al. Interpreting the mechanisms of continuous renal replacement therapy in sepsis: The peak concentration hypothesis. Artif Organs 27:792-801, 2003.
32. Honore PM, Jacobs R, Joannes-Boyau O, Spapen HD, et al. Septic AKI in ICU patients. diagnosis, pathophysiology, and treatment type, dosing, and timing: a comprehensive review of recent and future developments. Annals of Intensive Care 1:32, 2011.
33. Honore PM, Joannes-Boyau O, Boer W, Collin V. High-volume hemofiltration in sepsis and SIRS: current concepts and future prospects. Blood Purif 28:1-11, 2009.
34. Cantaluppi V, Assenzio B, Pasero D, Ranieri VM, et al. Polymyxin-B hemoperfusion inactivates circulating proapoptotic factors. Intensive Care Med 34:1638-1645, 2008.
35. Messer J, Mulcahy B, Fissell WH. Middle-molecule clearance in CRRT: in vitro convection, diffusion and dialyzer area. ASAIO J 55:224-226, 2009.
36. Ricci Z, Ronco C, Bachetoni A, D'amico G, Rossi S, Alessandri E, Rocco M, Pietropaoli P. Solute removal during continuous renal replacement therapy in critically ill patients: convection versus diffusion. Crit Care 10:R67, 2006.
37. Matson JR, Zydney AR, Honore PM. Blood filtration: new opportunities and the implications on system biology. Critical Care Resucitation 6:209-218, 2004.
38. Honore PM, Clark W. Novel therapeutical concepts for extracorporeal treatment of hyperinflammation and sepsis: immunomodulation. approach with a novel high Cut-OFF membrane: the SepteX membrane. Proceedings of 10th Congress of World Federation of CCU (WFSICCM) Florence, Italy; 2009.
39. Devarajan P. Emerging biomarkers of acute kidney injury. Contrib Nephrol 156:203-212, 2007.
40. Hoste EA, Kellum JA. Acute kidney injury: epidemiology and diagnostic criteria. Curr Opin Crit Care 12:531-537, 2006.
41. Davenport A, Bouman C, Kirpalani A, et al. Delivery of renal replacement therapy in acute kidney injury: What are the key issues? Clin J Am Soc Nephrol 3:869-75, 2008.
42. Filler G, Bokenkamp A, Hofmann W, Le Bricon T, Martinez-Bru C, Grubb A. Cystatin C as a marker of GFR-history, indications, and futurere search. Clin Biochem 38:1-8, 2005.
43. Devarajan P, Mishra J, Supavekin S, Patterson LT, Potter SS. Gene expression in early ischemic renal injury: clues towards pathogenesis, biomarker discovery, and novel therapeutics. Mol Genet Metab 80:365-376, 2003.
44. Honore PM, Joannes-Boyau O, Boer W, Janvier G, Gressens B. Acute kidneyinjury in the ICU: time has come for an early biomarker kit! Acta Clin Belg Suppl 2:318-321, 2007.
45. Bagshaw S, Mortis G, Doig CJ, Godinez-Luna T, Fick GH, Laupland KB. Oneyear mortality in critically ill patients by severity of kidney dysfunction: a population-based assessment. Am J Kidney Dis 48:402-409, 2006.
46. Endre ZH, Pickering JW. New markers of acute kidney injury: giant leapsand baby steps. Clin Biochem Rev 32:121-124, 2011.
47. Ravindra L. Mehta. Management of Acute Kidney Injury: It's the Squeaky Wheel That Gets the Oil! Clin J Am Soc Nephrol 6:2102-2104, 2011.
48. Yang H, Fogo AB. Cell senescence in the aging kidney. J Am Soc Nephrol 21:1436-1439, 2010.
49. Ishani A, Xue JL, Himmelfarb J, et al. Acute kidney injury increases risk of ESRD among elderly. J Am Soc Nephrol 20:223-228, 2009.
50. Khosla N, Soroko SB, Chertow GM, et al. Preexisting chronic kidney disease: a potential for improved outcomes from acute kidney injury. Clin J Am Soc Nephrol 4:1914, 2009.
51. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368-1377, 2001.
52. Wiedermann CJ, Wiedermann W, Joannidis M. Hypoalbuminemia and acute kidney injury: a meta-analysis of observational clinical studies. Intensive Care Med 36(10):1657-65, 2010.
53. Singbartl K, Kellum JA. AKI in the ICU: definition, epidemiology, risk stratification, and outcomes. Kidney Int doi:10.1038/ki.2011.339, 2011.
54. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med 13(10):818-29, 1985.

 
 
 
 
 
 
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
ua31618