PROTECCION MIOCARDICA EN PEDIATRIA

PROTECCION MIOCARDICA EN PEDIATRIA

(especial para SIIC © Derechos reservados)
La cardioplejia es la mejor solución para obtener un campo operatorio cardíaco seco y quieto; también es el principal componente de la protección miocárdica.
durandy9_022813.jpg Autor:
Yves Durandy
Columnista Experto de SIIC

Institución:
Institut Hospitalier J. Cartier


Artículos publicados por Yves Durandy
Recepción del artículo
5 de Enero, 2013
Aprobación
15 de Febrero, 2013
Primera edición
3 de Abril, 2013
Segunda edición, ampliada y corregida
7 de Junio, 2021

Resumen
La cardioplejia es la mejor solución para obtener un campo operatorio cardíaco seco y quieto; también es el principal componente de la protección miocárdica. No hay dudas de su eficiencia en la prevención de las lesiones isquémicas miocárdicas durante el clampaje transversal aórtico, aunque hay pocos datos, si los hay, basados en la evidencia sobre la mejor calidad y cantidad de la cardioplejia que se requiere para maximizar la protección miocárdica (la cual puede ser diferente de una patología a otra). Durante años el método de referencia fue la cardioplejia cristaloide fría intermitente, pero progresivamente se implementaron algunos perfeccionamientos. El cambio de una cardioplejia cristaloide a una sanguínea y de una fría a una templada fueron probablemente las dos modificaciones principales adoptadas por un gran número de cirujanos cardíacos. Estas modificaciones se implementaron inicialmente en la cirugía en adultos y luego se aplicaron en la cirugía pediátrica. El objetivo de esta reseña fue describir la base racional de estos cambios, así como la progresión del uso de la cardioplejia sanguínea templada intermitente en las unidades pediátricas, sus ventajas y resultados. Otros factores involucrados en la protección miocárdica y las perspectivas futuras se analizan brevemente.

Palabras clave
protección miocárdica, cardioplejia, cardioplejia sanguínea templada, cirugía con sangre templada


Artículo completo

(castellano)
Extensión:  +/-10.7 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
Cardioplegia is the best solution to obtain a dry and quiet operating field; it is also a major component of myocardial protection. There is no doubt about its efficiency in preventing myocardial ischemic injuries during aortic cross-clamping, however there are few if any evidence-based data on the best quality and quantity of cardioplegia needed to maximize myocardial protection (which is likely to be different from one pathology to another). For years the "gold standard" was crystalloid cold intermittent cardioplegia, but progressively some refinements were implemented. Shifts from crystalloid to blood and from cold to warm cardioplegia were probably the two major modifications adopted by a great number of cardiac surgeons. These modifications were initiated in adult surgery and then applied in pediatric surgery. The goal of this review is to describe the rationale for these changes as well as the progression of intermittent warm blood cardioplegia use in pediatric units, its advantages and its results. Others factors involved in myocardial protection and future perspectives are briefly discussed.

Key words
myocardial protection, cardioplegia, warm blood cardioplegia, warm surgery


Full text
(english)
para suscriptores/ assinantes

Clasificación en siicsalud
Artículos originales > Expertos del Mundo >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Cirugía, Pediatría
Relacionadas: Anestesiología, Cardiología, Cuidados Intensivos



Comprar este artículo
Extensión: 10.7 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Enviar correspondencia a:
Yves Durandy, Institut Hospitalier J. Cartier, 91300, Avenue du Noyer Lambert, Massy, Francia
Bibliografía del artículo
1. Melrose DG, Dreyer B, Bentall HH, Baker JB. Elective cardiac arrest. Lancet 269:21-22, 1955.
2. Bentall HH, Dreyer B, Melrose DG. Arrest of isolated heart with potassium citrate. Lancet 270:555-559, 1957.
3. Shiroishi MS. Myocardial protection the rebirth of potassium based cardioplegia. Tex Heart Inst J 26:71-86, 1999.
4. Young WG, Sealy WC, Brown IW Jr et al. A method for controlled cardiacc arrest as an adjunct to open heart surgery. J Thorac Surg 32:604-611, 1956.
5. Willman VL, Cooper T, Zafiracopoulos P, Hanlon CR. Depression of ventricular function following elective cardiac arrest with potassium citrate. Surgery 46:792-796, 1959.
6. Helmsworth JA, Kaplan S, Clark Jr LC, McAdams AJ, Mathews EC, Edwards FK. Myocardial injury associated with asystole induced potassium citrate. Ann Surg 149:200-206, 1959.
7. Waldhausen JA, Braunwald NS, Bloodwell RD, Cornell WP, Morrow AG. Left ventricular function following elective cardiac arrest. J Thorac Cardiovasc Surg 39:799-807, 1960.
8. Björk VO, Fors B. Induced cardiac arrest. J Thorac Cardiovasc Surg 41:387-394, 1961.
9. McFarland JA, Thomas LB, Gilbert JW, Morrow AG. Myocardial necrosis following elective cardiac arrest induced with potassium citrate. J Thorac Cardiovasc Surg 40:200-208, 1960.
10. Buckberg GD, Towers B, Paglia DE, Mulder DG, Maloney JV. Subendocardial ischemia after cardiopulmonary bypass. J Thorac Cardiovasc Surg 64:669-684, 1972.
11. Kahles H, Mezger VA, Hellige G, Spieckemann PG, Bretscheinder HJ. The influence of myocardial edema formation on the energy consumption of the heart during aerobiosis and hypoxia. Basic Res Cardiol 77:158-169, 1982.
12. Foglia RP, Steed DL, Folette DM, DeLand E, Buckberg GD. Iatrogenic myocardial edema with potassium cardioplegia. J Thorac Cardiovasc Surg 78:217-222, 1979.
13. Shaffer RF, Baumgarten CM, Damiano RJ Jr. Prevention of cellular edema directly caused by hypothermic cardioplegia: studies in isolated human and rabbit atrial myocytes. J Thorac Cardiovasc Surg 115:1189-1195, 1998.
14. Folette DM, Steed DL, Foglia RP. Reduction on postischemic myocardial damage by maintaining arrest during initial reperfusion. Surg Forum 28:281-283, 1977.
15. Folette DM, Steed DL, Foglia RP, Buckberg GD, Advantages of intermittent blood cardioplegia over intermittent ischemia during prolonged hypothermic aortic clamping. Circulation 58:1200-1209, 1978.
16. Rosenkranz ER, Buckberg GD, Mulder DG, Laks H. Warm induction of cardioplegia with glutamate-enriched blood in coronary patients with cardiogenic shock who are dependent on inotropic drugs and intraaortic balloon support: initial experience and operative strategy. J Thorac Cardiovasc Surg 86:507-518, 1983.
17. Lichtenstein SV, Abel JG, Panos A, Slutsky AS. Long cross-clamp times with warm heart surgery. Lancet 1:1443, 1989.
18. Lichtenstein SV, Abel JG, Panos A, Slutsky AS, Salerno TA. Warm heart surgery: experience with long cross clamp time. Ann Thorac Surg 52:1009-1019, 1991.
19. Calafiore AM, Teodori G, Mezzetti A et al. Intermittent antegrade warm blood cardioplegia. Ann Thorac Surg 59:398-402, 1995.
20. Robinson LA, Schwarz GD, Goddard DB, Fleming WH, Galbraith TA. Myocardial protection for acquired heart disease surgery: results of a national survey. Ann Thorac Surg 59:61-72, 1995.
21. Amark K, Berggren H, Björk K et al. Blood cardioplegia provides superior protection in infant cardiac surgery. Ann Thorac Surg 80:989-994, 2005.
22. Bilfinger TV, Moeller JT, Kurusz M, Grimson RC, Anagnostopoulos CE. Pediatric myocardial protection in the United States: a survey of current clinical practice. Thorac Cardiovasc Surg 40:214-218, 1992.
23. Buckberg GD, Brazier JR, Nelson RL y col. Studies on the effects of hypothermia on regional myocardial blood flow and metabolism during cardiopulmonary bypass. I. The adequately perfused beating, fibrillating and arrested heart. J Thorac Cardiovasc Surg 73:87-94, 1977.
24. Sakaï T, Kuihara S. Effect of rapid cooling on mechanical and electrical responses in ventricular muscle of the guinea pig. J Physiol 361:361-378, 1985.
25. Monroe RG, Stran GH, LaFarge CG, Levy J. Ventricular performance pressure volume relationships and O2 consumption during hypothermia. Am J Physiol 206:67-73, 1964.
26. Archie JP, Kirklin JW. Effect of hypothermic perfusion on myocardial consumption and coronary resistance. Surg Forum 24:186-188, 1973.
27. Bernhard WF, Schwarz HF, Mallick NP. Elective hypothermic cardiac arrest in normothermic animals. Ann Surg 153:43-51, 1961.
28. Caputo M, Dihmis WC, Bryan AJ, Suleiman MS, Angelini GD. Warm blood hyperkalaemic reperfusion ("hot shot") prevents myocardial substrate derangements in patients undergoing coronary artery bypass surgery. Eur J Cardiothorac Surg 13:559-564, 1998.
29. Williams WG, Rebeyka IM, Tibshirani RJ y col. Warm induction blood cardioplegia in the infant. A technique to avoid rapid cooling myocardial contracture. J Thorac Cardiovasc Surg 100:896-901, 1990.
30. Cork RC, Azari DM, McQuenn KAK, Aufderheide S, Mitchell M, Naraghi M. Effect of esmolol given during cardiopulmonary bypass on fractional area of contraction from transesophageal echocardiography. Anaesth Analg 81:219-224, 1995.
31. Fannelop T, Dahle GO, Matre K y col. Esmolol before 80 min cardiac arrest with oxygenated cold blood cardioplegia alleviates systolic dysfunction, an experimental study in pigs. Eur J Cardiothorac Surg 33:9-17, 2008
32- Roe BB. Warm blood cardioplegia: back to square one. Ann Thorac Surg 55:330-331, 1993.
33- Guyton RA. Warm blood cardioplegia: benefits and risks. Ann Thorac Surg 55:1071-1072, 1993.
34- Menasché P. Warm cardioplegia or aerobic cardioplegia? Let's call a spade a spade. Ann Thorac Surg 58:5-6, 1994.
35- Ko W, Zelano J, Fahey AL, Berman K, Isom OW, Krieger KH. Ischemic tolerance of the arrested heart during warm cardioplegia. Eur J Cardiothorac Surg 7:295-299, 1993.
36. Lichteinstein SV, Naylor CD, Feindel CM et al. Intermittent warm blood cardioplegia. Circulation 92(II):341-346, 1995.
37. Jacquet LM, Noirhomme PH, Van Dyck MJ y col. Randomized trial of intermittent antegrade warm blood versus cold crystalloid cardioplegia. Ann Thorac Surg 67:471-477, 1999.
38. Isomura T, Hisatomi K, Sato T Hayashida N, Ohishi K. Interrupted warm blood cardioplegia for coronary artery bypass grafting. Eur J Cardiothorac Surg 9:133-138, 1995.
39. Ali IM, Kinley CE. The safety of intermittent warm blood cardioplegia. Eur J Cardiothorac Surg 8:554-556, 1994.
40. Franke UFW, Korsh S, Wittwer T y col. Intermittent antegrade warm myocardial protection compared to intermittent cold blood cardioplegia in elective coronary surgery- do we have to change? Eur J Cardiothorac Surg 23:341-346, 2003.
41. Pelletier LC, Carrier M, Leclerc Y, Cartier R, Wesolowska E, Solymoss BC. Intermittent antegrade warm versus cold blood cardioplegia: a prospective, randomized study. Ann Thorac Surg 58:41-49, 1994.
42. Tulner SAF, Klautz RJM, Engbers FHM y col. Left ventricular function and chronotropic responses after normothermic cardiopulmonary bypass with intermittent antegrade warm blood cardioplegia in patients undergoing coronary artery bypass grafting. . Eur J Cardiothorac Surg 27:599-605, 2005.
43. Minatoya K, Okabayashi H, Shimada I y col. Intermittent antegrade warm blood cardioplegia for CABG: extended interval of cardioplegia. Ann Thorac Surg 69:74-76, 2000.
44. Fan Y, Zhang AM, Xiao YB, Wenf YG, Hetzer R. Warm versus cold cardioplegia for heart surgery: a meta-analysis. Eur J Cardiothorac Surg 37:912-919, 2009.
45. Durandy Y, Hulin S. Intermittent warm blood cardioplegia in the surgical treatment of congenital heart disease: clinical experience with 1400 cases. J Thorac Cardiovasc Surg 133:241-266, 2007.
46. Durandy Y, Younes M, Mahut B. Pediatric warm open heart surgery and prolonged cross-clamp time. Ann Thorac Surg 86:1941-1947, 2008.
47. Menasché P. Blood cardioplegia: do we still need to dilute? Ann Thorac Surg 62:957-960, 1996.
48. Wittnich C, Belanger MP, Bandali KS. Newborn hearts are at greater "metabolic risk" during global ischemia-advantages of continuous coronary washout. Can J Cardiol 23:195-200, 2007.
49. Taggart DP, Hadjinikolas L, Wong K y col. Vulnerability of paediatric myocardium to cardiac surgery. Heart 76:214-217, 1996.
50. Taggart DP, Hadjinikolas L, Hooper J et al. Effects of age and ischemic times on biochemical evidence of myocardial injury after pediatric cardiac operations. J Thorac Cardiovasc Surg 113:728-735, 1997.
51. Grice NW, Konishi T, Apstein CS. Resistance of neonatal myocardium to injury during normothermic and hypothermic ischemic arrest and reperfusion. Circulation 76(5 Pt 2): 150-155, 1987.
52. Bove EL, Gallagher KP, Drake DH et al. The effect of hypothermic ischemia on recovery of left ventricular function and preload reserve in the neonatal heart. J Thorac Cardiovasc Surg 95:814-818, 1988.
53. Julia PL, Kofsky ER, Buckberg GD, Young HH, Bugyi HI. Studies of myocardial protection in the immature heart. I. Enhanced tolerance of immature versus adult myocardium to global ischemia with reference to metabolic differences. J Thorac Cardiovasc Surg 100:879-887, 1990.
54. Durandy Y. Warm pediatric cardiac surgery: european experience. Asian Cardiovasc Thorac Ann 18:386-395, 2010.
55. Poncelet AJ, van Steenberghea M, Moniotte S y col. Cardiac and neurological assessment of normothermia/warm blood cardioplegiavs hypothermia/cold crystalloid cardioplegia in pediatric cardiac surgery: insight from a prospective randomized trial. Eur J Cardiothorac Surg 40:1384-1390, 2011.
56. Durandy Y. The impact of vacuum-assisted venous drainage and miniaturized bypass circuits on blood transfusion in pediatric cardiac surgery. ASAIO J 55:117-120, 2009.
57. Hickey E, Karamlou T, You J, Ungerleider RM. Effects of circuit miniaturization in reducing inflammatory response to infant cardiopulmonary bypass by elimination of allogeneic blood products. Ann Thorac Surg 81:2367-2372, 2006.
58. Lim HK, Halestrap AP, Angelini GD, Suleiman MS. Propofom is cardioprotective in a clinicaly relevant model of normothermic blood cardioplegic arrest and cardiopulmonary bypass. Exp Biol Med 230:413-420, 2005.
59. Fraädorf J, Huhn R, Weber NC y col. Sevoflurane-induced preconditioning: impact of protocol and aprotinin administration on infarct size and endothelial nitric-oxide synthase phosphorylation in the rat heart in vivo. Anesthesiology 113:1289-1298, 2010.
60. Larsen JR, Sivesgaard K, Christensen SD, Hønge JL, Hasenkam JM. Heart rate limitation and cardiac unloading in sevoflurane post-conditioning. Acta Anaesthesiol Scand 56:57-65, 2012.
61. Ríha H, Kotulák T, Brezina A y col. Comparison of the effects of ketamine-dexmedetomidine and sevoflurane-sufentanil anesthesia on cardiac biomarkers after cardiac surgery: an observational study. Physiol Res 61(1):63-72, 2012.
62. Lange R, Ware J, Kloner RA. Absence of cumulative deterioration of regional function during three repeated 5 to 15 minute coronary occlusions. Circulation 69:400-408, 1984.
63. Landymore RW, Marble AE, Fris J. Effect of intermittent delivery of warm blood cardioplegia on myocardial recovery. Ann Thorac Surg 57:1267-1272, 1994.
64. Perrault L, Menasché P, Bel A y col. Ischemic preconditioning in cardiac surgery: a word of caution. J Thorac Cardiovasc Surg 112:1378-1386, 1996.
65. Landymore R, You J, Murphy T, Fris J. Preconditioning during warm blood cardioplegia. Eur J Cardiothorac Surg 11:1113-1117, 1997.
66. Chello M, Mastroroberto P, Patti G, D'Ambrosio A, Di Sciasco G, Covino E. Intermittent warm blood cardioplegia induces the expression of heat shock protein-72 by ischemic myocardial preconditioning. Cardiovasc Surg 11:367-374, 2003.
67. Cheung MM, Kharbanda RK, Konstantinov IE y col. Randomized controlled trial of the effects of remote ischemic preconditioning children undergoing cardiac surgery: first clinical application in humans. J Am Coll Cardiol 47:2277-2282, 2006.
68. Ji Q, Mei Y, Wang X y col. Effect of ischemic postconditioning in the correction of tetralogy of Fallot. Int Heart J 52:312-317, 2011.
69. Li B, Chen R, Huang R, Luo W. Clinical benefit of cardiac ischemic post conditioning in corrections of tetralogy of Fallot. Interact Cardiovasc Thorac 8:17-21, 2009.
70. Liu J, Feng Z, Zhao J, Li B, Long C. The myocardial protection of HTK cardioplegic solution on the long-term ischemic period in pediatric heart surgery. ASAIO J 54:470-473, 2008.
71. Kim JT, Park YH, Chang YE et al. The effect of cardioplegic solution-induced sodium concentration fluctation on postoperative seizure in pediatric cardiaccardíac patients. Ann Thorac Surg 91:1943-1948, 2011.
72. Fannelop T, Dahle GO, Salminen PR y col. Multidose cold oxygenated blood is superior to a single dose of Bretschneider HTK-cardioplegia in the pig. Ann Thorac Surg 87:1205-1213, 2009.
73- Aarsaether E, Stentberg TA, Jakobsen Ø, Busund R. Mechanoenergetic function and troponin T release following cardioplegic arrest induced by St Thomas' and histidine-tryptphane-ketoglutarate cardioplegia-an experimental comparative study in pigs. Interact Cardiovasc Thorac Surg 9:635-639, 2009.
74. Depre C, Vatner SF. Cardioprotection in stunned and hibernating myocardium. Heart Fail Rev 12:307-317, 2007.
75. Bolli R, Becker L, Gross G y col. Myocardial protection at a crossroads: the need for translation in clinical therapy. Cir Res 95:125-134, 2004.

 
 
 
 
 
 
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
ua31618