Conceptos Categóricos

VALOR CLINICO DEL PUNTAJE OSEO TRABECULAR CALCULADO A PARTIR DE LA ABSORCIOMETRIA DE RAYOS X DE ENERGIA DUAL DE COLUMNA
Artículos relacionadosArtículos relacionadosArtículos relacionados
Artículos afines de siicsalud publicados en los últimos 4 meses
ENCUESTA SOBRE EL TRATAMIENTO DE LA OSTEOPOROSIS DURANTE LA PANDEMIA DE COVID-19
Archives of Osteoporosis 16(11)
Difundido en siicsalud: 10 jun 2021

VALOR CLINICO DEL PUNTAJE OSEO TRABECULAR CALCULADO A PARTIR DE LA ABSORCIOMETRIA DE RAYOS X DE ENERGIA DUAL DE COLUMNA

(especial para SIIC © Derechos reservados)
El valor agregado del Trabecular Bone Score respecto de la densitometría mineral ósea para la evaluación del riesgo de fracturas ha sido documentado en estudios transversales, prospectivos y longitudinales.
Autor:
Didier Hans
Columnista Experta de SIIC

Institución:
Center of Bone diseases, Bone and Joint Department - Lausanne University Hospital


Artículos publicados por Didier Hans
Coautores
Luis del Rio* Bruno Muzzi Camargos** Mário Rui Mascarenhas4*** Juan Alfredo Tamayo**** Claudia Gomez Acotto***** 
CETIR Centre Medic, Barcelona, España*
Universidade Federal de Minas Gerais, Minas Gerais, Brasil**
Santa Maria University Hospital-CHLN, Lisboa, Portugal***
Mexican Committee for Prevention of Osteoporosis, Mexico, México****
Maimonides Universite Buenos Aires, Buenos Aires, Argentina*****
Recepción del artículo
2 de Marzo, 2015
Aprobación
1 de Abril, 2015
Primera edición
12 de Mayo, 2015
Segunda edición, ampliada y corregida
7 de Junio, 2021

Resumen
Intrínsecamente, se acepta el hecho de que definir la osteoporosis solamente sobre la base de la densidad mineral ósea proyectada (DMO mediante DXA) ha llegado a su límite. De hecho, el aspecto multifactorial de esta enfermedad hace que la definición actual de osteoporosis evolucione hacia un modelo de riesgo complejo basado en el factor de riesgo clínico (FRC) y la DMO. El puntaje óseo trabecular (trabecular bone score [TBS]) es una nueva medición de escala de grises que se basa en el uso de variogramas experimentales sobre imágenes en proyección 2D, y que permite diferenciar entre dos microarquitecturas tridimensionales (3D) que presentan la misma densidad ósea pero con diferentes características trabeculares. El TBS mide la tasa promedio de variación local en escala de grises sobre imágenes de proyección 2D. Este parámetro se obtiene luego del reanálisis de un examen de DXA, y puede compararse con la DMO, dado que ambos evalúan la misma región ósea. El valor agregado del TBS respecto de la densitometría mineral ósea para la evaluación del riesgo de fracturas ha sido documentado en estudios transversales, prospectivos y longitudinales. De hecho, se ha hallado que el TBS: 1) es más bajo en las mujeres posmenopáusicas con una fractura osteoporótica previa, en comparación con mujeres sin fracturas apareadas por edad y DMO; 2) brinda un aumento incremental en el odds ratio para fractura de columna cuando se combina con la DMO de columna; 3) es más bajo en las mujeres con fracturas (comparado con aquellas sin fracturas), independientemente de si su DMO reúne los criterios para osteoporosis u osteopenia; 4) predice fracturas en forma prospectiva, tal como lo hace la DMO; 5) rescata alrededor de 1/3 de las fracturas clasificadas de manera errónea según la definición de DMO de la OMS para osteoporosis aislada, y 6) se comporta de manera diferente de acuerdo con el tipo de terapia ósea implementada. El objetivo de esta breve revisión consiste en brindar información acerca de los ensayos clínicos actuales referentes al TBS, además de posicionar este parámetro en la práctica clínica como complemento de la DMO en vista de su actual validación.

Palabras clave
Trabecular Bone Score, absorciometría de rayos X de energía dual, microarquitectura ósea, densidad mineral ósea


Artículo completo

(castellano)
Extensión:  +/-17.87 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
Intrinsically it is accepted that defining osteoporosis on the sole basis of projected bone mineral density (BMD by DXA) has reached its limit. Indeed, the multifactorial aspect of this disease means that the current definition of osteoporosis is evolving towards a complex risk model based on Clinical Risk Factor (CRF) and BMD. The trabecular bone score (TBS) is a novel grey-level texture measurement that is based on the use of experimental variograms of 2D projection images, and is able to differentiate between two 3-dimensional (3D) micro-architectures that exhibit the same bone density, but different trabecular characteristics. TBS measures the mean rate of local variation of grey levels in 2D projection images. The TBS is obtained after re-analysis of a DXA exam, and can be compared with BMD, since both evaluate the same region of bone. The added value of the TBS in bone mineral densitometry for fracture risk assessment has been documented in cross-sectional, prospective and longitudinal studies. Indeed, TBS has been found to: 1) be lower in post-menopausal women with a past osteoporotic fracture compared with age- and BMD-matched women without fracture; 2) give an incremental increase in the odds ratio for spine fracture when combined with spine BMD; 3) be lower in women with (versus without) fractures, irrespective of whether their BMD met the criteria for osteoporosis or osteopenia; 4) prospectively predict facture as well as spine BMD; 5) recapture around 1/3 of mis-classified fractures according to the BMD WHO definition of osteoporosis alone, and 6) react differently according to the type of bone therapy. The aim of this short review is to report the current clinical studies as well as to position TBS in clinical routine to complement BMD in the light of its current validation.

Key words
bone mineral density, trabecular bone score, bone microarchitecture, dual-energy x-ray absorptiometry


Full text
(english)
para suscriptores/ assinantes

Clasificación en siicsalud
Artículos originales > Expertos del Mundo >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Diagnóstico por Imágenes, Osteoporosis y Osteopatías Médicas
Relacionadas: Anatomía Patológica, Bioquímica, Reumatología



Comprar este artículo
Extensión: 17.87 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Enviar correspondencia a:
Didier Hans, Lausanne University Hospital Center of Bone Diseases - Bone and Joint Department , 1011, Av Pierre-Decker, 4, Lausanne, Suecia
Bibliografía del artículo
1. Czerwinski E, Badurski JE, Marcinowska-Suchowierska E, Osieleniac J. Current understanding of osteoporosis according to the position of the World Health Organization (WHO) and International Osteoporosis Foundation. Ortop Traumatol Rehabil 9:337-56, 2007.
2. Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19(4):385-97, 2009.
3. Meunier PJ, Delmas PD, Eastell R, McClung MR, Papapoulos S, Rizzoli R et al. Diagnosis and management of osteoporosis in postmenopausal women: clinical guidelines. International Committee for Osteoporosis Clinical Guidelines. Clin Ther 21(6):1025-44, 1999.
4. Johnnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17:1726-33, 2006.
5. Browner WS, Pressman AR, Nevitt MC, et al. Mortality following fractures in older women. The Study of Osteoporotic Fractures. Arch Intern Med 156:1521-5, 1996.
6. Hannan EL, Magaziner J, Wang JJ, et al. Mortality and locomotion 6 months after hospitalization for hip fracture: risk factors and risk-adjusted hospital outcomes. JAMA 285:2736-42, 2001.
7. Looker AC, Orwoll ES, Johnston CC Jr, Lindsay RL, Wahner HW, Dunn WL et al. Prevalence of low femoral bone density in older U.S. adults from NHANES III. J Bone Miner Res 12:1761-8, 2009.
8. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J Bone Miner Res 22:465-75, 2007.
9. Davies KM, Stegman MR, Heaney RP, Recker RR. Prevalence and severity of vertebral fracture: The Saunders County Bone Quality Study. Osteoporos Int 6(2):160-5, 2005.
10. Leslie WD, Lix LM, Langsetmo L, Berger C, Goltzman D, Hanley DA, Adachi JD, Johansson H, Oden A, McCloskey E, Kanis JA. Construction of a FRAX® model for the assessment of fracture probability in Canada and implications for treatment. Osteoporos Int. In press.
11. Adler RA. The need for increasing awareness of osteoporosis in men. Clin Cornerstone 8(Suppl 3):S7-S13, 2006.
12. Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17(12):1726-33, 2006.
13. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser 843:1-129, 1994.
14. Johnell O, Kanis JA, Oden E, Johansson H, De Laet C, Delmas P et al. Predictive value of BMD for hip and other fractures. J Bone Miner Res 20(7):1185-94, 2005.
15. Hordon LD, Raisi M, Paxton S, Beneton MM, Kanis JA, Aaron JE. Trabecular architecture in women and men of similar bone mass with and without vertebral fracture: Part I. 2-D histology. Bone 27(2):271-6, 2000.
16. Link TM, Majumdar S. Current diagnostic techniques in the evaluation of bone architecture. Curr Osteoporos Rep 2(2):47-52, 2004.
17. Rubin CD. Emerging concepts in osteoporosis and bone strength. Curr Med Res Opin 21(7):1049-56, 2005.
18. Genant HK, Engelke K, Prevrhal S. Advanced CT bone imaging in osteoporosis. Rheumatology 47:9-16, 2008.
19. Bredella MA, Misra M, Miller KK, Madisch I, Sarwar A, Cheung A, Klibanski A, Gupta R. Distal radius in adolescent girls with anorexia nervosa: trabecular structure analysis with high-resolution flat-panel volume CT. Radiology 249(3):938-46, 2008.
20. Krug R, Carballido-Gamio J, Banerjee S, Burghardt AJ, Link TM, Majumdar S. In vivo ultra-high-field magnetic resonance imaging of trabecular bone microarchitecture at 7 T. J Mag Res Imag 27:854-859, 2008.
21. Caligiuri P, Giger ML, Favus MJ, Jia H, Doi K, Dixon LB. Computerized radiographic analysis of osteoporosis: preliminary evaluation. Radiology 186:471-474, 1993.
22. Samarabandu J, Acharya R, Hausmann E, Allen K. Analysis of bone X-rays using morphological fractals. Medical Imaging IEEE 12:466-470, 1993.
23. Prouteau S, Ducher G, Nanyan P, Lemineur G, Benhamou L, Courteix D. Fractal analysis of bone texture: a screening tool for stress fracture risk? Eur J Clin Invest 34:137-142, 2004.
24. Gregory JS, Stewart A, Undrill PE, Reid DM, Aspden RM. Identification of hip fracture patients from radiographs using Fourier analysis of the trabecular structure: a cross-sectional study. BMC Med Imaging 4:4, 2004.
25. Chappard D, Guggenbuhl P, Legrand E, Basle ME, Audran M. Texture analysis of X-ray radiographs is correlated with bone histomorphometry. J Bone Miner Res 23:24-29, 2005.
26. Vokes TJ, Giger ML, Chinander MR, Karrison TG, Favus MJ, Dixon LB. Radiographic texture analysis of densitometer-generated calcaneus images differentiates postmenopausal women with and without fractures. Osteoporos Int 17:1472-1482, 2006.
27. Bonnick SL. Bone densitometry in clinical practiced application and interpretation. Second edition. Human Press Inc., Totowa, NJ, 2004.
28. Genant HK, Wu CY, Van Kuijk C, Nevitt MC. Vertebral fracture assessment using a semi-quantitative approach. J Bone Miner Res 8:1137-1148, 1993.
29. Duboeuf F, Bauer DC, Chapurlat RD, Dinten JM, Delmas P. Assessment of vertebral fracture using densitometricmorphometry. J Clin Densitom 8:362-368, 2005.
30. Faulkner KG, Cummings SR, Black D, Palermo L, Glüer CC, Genant HK. Simple measurement of femoral geometry predicts hip fracture: the study of osteoporotic fractures. J Bone Miner Res 8:1211-1217, 1993.
31. Center JR, Nguyen TV, Pocock NA. Femoral neck axis length, height loss and risk of hip fracture in males and females. Osteoporos Int 8:75-81, 1998.
32. Beck TJ, Ruff CB, Warden KE, Scott WW, Jr., Rao GU. Predicting femoral neck strength from bone mineral data. A structural approach. Invest Radiol 25(1):6-18, 1990.
33. Nakamura T, Turner CH, Yoshikawa T, et al. Do variations in hip geometry explain differences in hip fracture risk between Japanese and white Americans? J Bone Miner Res 9(7):1071-1076, 1994.
34. Langton CM, Pisharody S, Keyak JH. Comparison of 3D finite element analysis derived stiffness and BMD to determine the failure load of the excised proximal femur. Med Eng Phys 31:668-672, 2009.
35. Boehm HF, Vogel T, Panteleon A, Burklein D, Bitterling H, Reiser M. Differentiation between post-menopausal women with and without hip fractures: enhanced evaluation of clinical DXA by topological analysis of the mineral distribution in the scan images. Osteoporos Int 18:779-787, 2007.
36. Pothuaud L, Carceller P, Hans D. Correlations between grey-level variations in 2D projection images (TBS) and 3D microarchitecture: applications in the study of human trabecular bone microarchitecture. Bone 42:775-87, 2008.
37. Hans D, Barthe N, Boutroy S, Pothuaud L, Winzenrieth R, Krieg MA. Correlations between TBS, measured using antero-posterior DXA acquisition, and 3D parameters of bone micro-architecture: an experimental study on human cadavre vertebrae. J Clin Densitom 14(3):302-311, 2011.
38. Piveteau T, Winzenrieth R, Hans D. Trabecular Bone Score (TBS) the new parameter of 2D texture analysis for the evaluation of 3D bone micro architecture status. J Clin Densitom 14(2):169, 2011.
39. Winzenrieth R, Piveteau T, Hans D. Assessment of correlations between 3D µCT microarchitecture parameters and TBS: effects of resolution and correlation with TBS DXA measurements. J Clin Densitom 14(2):169, 2011.
40. Pothuaud L, Barthe N, Krieg M-A, Mehsen N, Carceller P, Hans D. Evaluation of the potential use of trabecular bone score to complement bone mineral density in the diagnosis of osteoporosis: a preliminary spine BMD-matched, case-control study. J Clin Densitom 12(2):170-6, 2009.
41. Rabier B, Héraud A, Grand-Lenoir C, Winzenrieth R, Hans D. A multicentre, retrospective case-control study assessing the role of trabecular bone score (TBS) in menopausal Caucasian women with low areal bone mineral density (BMDa): Analysing the odds of vertebral fracture. Bone 46(1):176-81, 2010.
42. Winzenrieth R, Dufour R, Pothuaud L, Hans D. A retrospective case-control study assessing the role of trabecular bone score in postmenopausal Caucasian women with osteopenia: analyzing the odds of vertebral fracture. Calcif Tissue Int 86(2):104-9, 2010.
43. Winzenrieth R, Cormier C, Del Rio L, Di Gregorio S. Is bone micro-architecture status at spine assessed by TBS related to femoral neck fracture? A Spanish case-control study. IOF-ECCEO, Valencia, Mars 2011. Osteoporosis International - accepted.
44. Colson F, Winzenrieth R. Assessment of osteopenic women microarchitecture with and without osteoporotic fracture by TBS on a new generation bone densitometer. ISCD Annual meeting, Miami, USA, 2011.
45. Hans D, Goertzen AL, Krieg MA, Leslie WD. Bone Micro-Architecture Assessed by TBS Predicts Osteoporotic Fractures Independent of Bone Density: The Manitoba Study. J Bone Miner Res 26(11):2762-9, 2011.
46. Boutroy S, Hans D, Sornay-Rendu E, Vilayphiou N, Winzenrieth R, Chapurlat R. Trabecular Bone Score helps classifying women at risk of fracture:a prospective analysis within the OFELY Study. J Bone Miner Res Suppl. ASBMR, Toronto, CA October 2010.
47. Dufour R, Heraud A. Lumbar Spine microarchitecture in French women derived from DXA scan: TBS normative data. ISCD Annual meeting, Orlando, USA, 2009.
48. Krieg M-A, Goertzen A, Leslie WD, Hans D. Effects of antiresorptive agents on bone micro-architecture assessed by Trabecular Bone Score in women age 50 and older: The Manitoba Prospective Study. Bone 48(Suppl. 2):S217, 2011.
49. Maury E, Winzenrieth R, Souberbielle JC, Cormier C. BMD and TBS micro architecture parameters assessment at spine in patients with primary hyperparathyroidism (PHPT) before and one year after parathyroidectomy. Annual Meeting of the American Society of Bone and Mineral Research. Toronto, Canada; Oct. 15-19, 2010.
50. Kanis JA, Johansson H, Oden A, Johnell O, De Laet C et al. A meta-analysis of prior corticosteroid use and fracture risk. J Bone Miner Res 19(6):893-899, 2004.
51. Colson F Rabier B, Vignon E. Trabecular bone microarchitecture alteration in glucocorticoids treated women in clinical routine? A TBS evaluation. Annual Meeting of the American Society of Bone and Mineral Research. Denver, USA; Sept. 12-15, 2009. SU0452 (full article submitted).
52. Bréban S, Kolta S, Briot K, Ghazi M, Fechtenbaum J, Dougados M, Roux C. Combination of Bone Mineral Density and Trabecular Bone Score for vertebral fracture prediction in secondary osteoporosis. Annual Meeting of the American Society of Bone and Mineral Research. Toronto, Canadá; Oct. 15-19, 2010. SA0297.
53. Maury E, Guignat L, Winzenrieth R, Cormier C. BMD and TBS microarchitecture parameter assessment at spine in patient with anorexia nervosa. Annual Meeting of the American Society of Bone and Mineral Research.Denver, USA; 2009.September. MO0017 (full article submitted).
54. Kellgren JH, Lawrence JS: Osteoarthrosis and disc degeneration in an urban population. Ann Rheum Dis 34:379-387, 1975.
55. Peel NF, Barrington NA, Blumsohn A, Colwell A, Hannon R, Eastell R. Bone mineral density and bone turnover in spinal osteoarthrosis. Ann Rheum Dis 54:867-71, 1995.
56. Winzenrieth R, Dufour R, Popova Y, Hans D. Spine osteo-arthrosis has no effect on TBS assessment: A site matched study with BMD. JCD 13(1):130-131.

 
 
 
 
 
 
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
ua31618
-->