Conceptos Categóricos

EFECTO PROTECTOR DEL VALSARTAN EN LA RESISTENCIA NEURONAL A LA INSULINA Y LA INFLAMACION EN LA DIABETES TIPO 2
Artículos relacionadosArtículos relacionadosArtículos relacionados
Artículos afines de siicsalud publicados en los últimos 4 meses

EFECTO PROTECTOR DEL VALSARTAN EN LA RESISTENCIA NEURONAL A LA INSULINA Y LA INFLAMACION EN LA DIABETES TIPO 2

(especial para SIIC © Derechos reservados)
La evidencia sugiere que la diabetes tipo 2 no sólo es un trastorno metabólico con consecuencias en el sistema nervioso, sino también un trastorno del sistema nervioso con consecuencias metabólicas e inflamatorias. El uso de agentes que inhiben las acciones de la angiotensina II, como el valsartán, parecen ejercer un importante efecto protector en el mantenimiento de la comunicación entre los circuitos hipotalámicos relacionados con el mantenimiento del balance energético y la periferia.
Autor:
Mariella Pastorello
Columnista Experta de SIIC

Institución:
Laboratorio de Neuropeptidos, Facultad de Farmacia, Universidad Central de Venezuela


Artículos publicados por Mariella Pastorello
Coautor
Anita Israel* 
Farmaceutico, Universidad Central de Venezuela, Caracas, Venezuela*

Resumen
Introducción: La diabetes mellitus tipo 2 (DBT2) se asocia con alteraciones de los mecanismos contrarregulatorios ejercidos por la insulina a nivel del sistema nervioso central (SNC). Existe evidencia de que los receptores de insulina y AT1 de la angiotensina II están colocalizados en el hipotálamo, lo que sugiere la interacción de estos dos péptidos en el SNC. En la periferia, la angiotensina II promueve estrés oxidativo, resistencia a la insulina y nefropatía diabética; sin embargo, poco se sabe acerca de si los efectos deletéreos se manifiestan a nivel del SNC en la DBT2. Por ello, evaluamos el efecto de la angiotensina II sobre las acciones de la insulina central en ratas controles y con diabetes inducida por estreptozotocina. Igualmente, se estudió el posible efecto protector central y antiinflamatorio sistémico del valsartán. Materiales y métodos: El estado inflamatorio sistémico se evaluó mediante el análisis multiplex de microesferas. La resistencia neuronal a la insulina se determinó mediante la cuantificación de la glucemia en ratas tratadas en forma intracerebroventricular (ICV) con angiotensina II, con insulina o con ambas, pretratadas o no con valsartán. Resultados: Se demuestra que la insulina ICV ejerce un efecto hipoglucemiante, cuya magnitud es menor en condiciones diabéticas. La angiotensina II central antagonizó los efectos hipoglucemiantes de la insulina ICV. El valsartán previno la resistencia neuronal a la insulina, bloqueó las acciones de la angiotensina II ICV y redujo los niveles circulantes de citoquinas proinflamatorias. Conclusiones: Los resultados demuestran que existe resistencia neuronal a la insulina y un estado proinflamatorio sistémico en la DBT2 experimental, los cuales son evitados parcialmente por el valsartán.

Palabras clave
angiotensina, insulina, valsartán, diabetes, hipotálamo, resistencia neuronal, inflamación


Artículo completo

(castellano)
Extensión:  +/-9.4 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
Introduction: Diabetes mellitus type 2 (DBT2) is associated with alterations of counter-regulatory mechanisms exerted by insulin in the central nervous system. There is evidence that insulin receptor and AT1 angiotensin-II receptor are co-localized in the hypothalamus, suggesting an interaction of these two peptides in the central nervous system. On the periphery, angiotensin-II promotes oxidative stress, insulin resistance and the development of diabetic nephropathy; however, little is known whether the deleterious effects are manifested at central nervous system in DBT2. Therefore, we evaluated the effect of angiotensin-II on central insulin actions in control and streptozotocin-induced diabetic rats. Similarly, the possible central protective effect and systemic anti-inflammatory action of valsartan was studied. Materials and methods: The systemic inflammatory status was assessed by multiplex bead analysis. Neuronal insulin resistance was determined by quantification of glycemia in rats after intracerebroventricularly (ICV) administration of angiotensin-II and/or insulin, pretreated or not with valsartan. Results: It is shown that ICV administration of insulin exerts a hypoglycemic effect, whose magnitude is lower in diabetic conditions. Meanwhile central administration of angiotensin-II antagonized the hypoglycemic effects of insulin-ICV. Valsartan prevented neuronal insulin resistance, blocked the action of angiotensin-II-ICV and reduced circulating levels of pro-inflammatory cytokines. Conclusions: The results show that there is neuronal insulin resistance and systemic pro-inflammatory state in the experimental DBT2, which are partially prevented by chronic treatment with valsartan.

Key words
angiotensin, insulin, valsartan, diabetes, hypothalamus, neuronal resistance, inflammation


Clasificación en siicsalud
Artículos originales > Expertos de Iberoamérica >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Diabetología, Farmacología
Relacionadas: Cardiología, Endocrinología y Metabolismo, Inmunología



Comprar este artículo
Extensión: 9.4 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Enviar correspondencia a:
Anita Israel, 1060, Santa Rosa de Lima. Calle La Cima, Seccion Las Mesetas, Ed. Mara, 82, Caracas, Venezuela
Bibliografía del artículo
1. OMS (Organización Mundial de la Salud). Nota descriptiva Nº 312. Septiembre 2012 (http://www.who.int/mediacentre/factsheets/fs312/es/ index.html).
2. Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest 106(2):171-176, 2000.
3. Weir GC, Laybutt DR, Kaneto H, Bonner-Weir S, Sharma A. Beta-cell adaptation and decompensation during the progression of diabetes. Diabetes 50(Suppl. 1):S154-159, 2001.
4. Dandona P, Aljada A, Chaudhuri A, Bandyopadhyay A. The potential influence of inflammation and insulin resistance on the pathogenesis and treatment of atherosclerosis-related complications in type 2 diabetes. J Clin Endocrinol Metab 88:2422-2429, 2003.
5. Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 18:286(3):327-34, 2001.
6. Pickup JC, Crook MA. Is type II diabetes mellitus a disease of the innate immune system? Diabetologia 41(10):1241-1248, 1998.
7. Sjöholm A, Nyström T. Inflammation and the etiology of type 2 diabetes. Diabetes Metab Res Rev 22(1):4-10, 2006.
8. King GL. The role of inflammatory cytokines in diabetes and its complications. J Periodontol 79(8 Suppl):1527-1534, 2008.
9. Schwartz MW. Distribution of insulin receptor substrate-2 in brain areas involved in energy homeostasis. Brain Res 1112(1):169-178, 2006.
10. Friedman JM. The functions of leptin in nutrition, weight, and physiology. Nutr Rev 60:S1-14; Discussion S68-84, 85-87, 2002.
11. Niswender KD, Schwartz MW. Insulin and leptin revisited: adiposity signals with overlapping physiological and intracellular signaling capabilities. Front Neuroendocrinol 24(1):1-10, 2003.
12. Lam TK, Schwartz GJ, Rossetti L. Hypothalamic sensing of fatty acids. Nat Neurosc 8(5):579-584, 2005.
13. Obici S, Feng Z, Karkanias G, Baskin DG, Rossetti L. Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nat Neurosci 5(6):566-572, 2002.
14. Bruehl H, Rueger M, Dziobek I y col. Hypothalamic-pituitary-adrenal axis dysregulation and memoryimpairments in type 2 diabetes. J Clin Endocrinol Metab 92(7):2439-2445, 2007.
15. Koshiyama H, Hamamoto Y, Honjo S, Wada Y, Lkeda H. Hypothalamic pathogenesis of type 2 diabetes. Med Hypotheses 67(2):307-310, 2006.
16. Barbaccia ML, Chuang DBT, Costa E. Is insulin a neuromodulator? Adv Biochem Psychopharmacol 33:511-518, 1982.
17. Margolis RU, Altszuler N. Insulin in the cerebrospinal fluid. Nature 215(5108):1375-1376, 1967.
18. Woods SC, Lotter EC, McKay LD, Porte D Jr. Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature 282(5738):503-505, 1979.
19. Sipols AJ, Baskin DG, Schwartz MW. Effect of intracerebroventricular insulin infusion on diabetic hyperphagia and hypothalamic neuropeptide gene expression. Diabetes 44(2):147-151, 1995.
20. Air EL, Benoit SC, Clegg DJ, Seeley RJ, Woods SC. Insulin and leptin combine additively to reduce food intake and body weight in rats. Endocrinol 143(6):2449-2452, 2002.
21. Rowe JW, Young JB, Minaker KL, Stevens AL, Pallotta J, Landsberg L. Effect of insulin and glucose infusions on sympathetic nervous system activity in normal man. Diabetes 30(3):219-225, 1981.
22. Schwartz MW, Figlewicz DP, Baskin DG, Woods SC, Porte D Jr. Insulin in the brain: a hormonal regulator of energy balance. Endocr Rev 13:387-414, 1992.
23. Baura GD, Foster DBT, Kaiyala K, Porte D Jr, Kahn SE, Schwartz MW. Insulin transport from plasma into the central nervous system is inhibited by dexamethasone in dogs. Diabetes 45(1):86-90, 1996.
24. Brüning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC. Role of brain insulin receptor in control of body weight and reproduction. Science 289:2122-2125, 2000.
25. Fujita T. Angiotensin II-induced insulin resistance is associated with enhanced insulin signaling. Hypertension 40:872-879, 2002.
26. Ogihara T, Asano T, Ando K, Chiba Y, Sakoda H, Anai M, Shojima N, Ono H, Onishi Y, Fujishiro M, Katagiri H, Fukushima Y, Kikuchi M, Noguchi N, Aburatani H, Komuro I, Fujita T. Angiotensin II-induced insulin resistance is associated with enhanced insulin signaling. Hypertension 40:872-879, 2002.
27. Rao RH. Effects of angiotensin II on insulin sensitivity and fasting glucose metabolism in rats. Am J Hypertens 7:655-660, 1994.
28. Cheetham C, Collis J, O'Driscoll G, Stanton K, Taylor R, Green D. Losartan, an angiotensin type 1 receptor antagonist, improves endothelial function in non-insulin-dependent diabetes. J Am Coll Cardiol 36(5):1461-1466, 2000.
29. Henriksen EJ, Jacob S, Kinnick TR, Teachey MK, Krekler M. Selective angiotensin II receptor antagonism reduces insulin resistance in obese Zucker rats. Hypertension 38(4):884-890, 2001.
30. Goodfriend TL, Elliott ME, Catt KJ. Angiotensin receptors and their antagonists. New Engl J Med 334:1649-1654, 1996.
31. Marks JL, Porte D Jr, Stahl WL, Baskin DG. Localization of insulin receptor mRNA in rat brain by in situ hybridization. Endocrinol 127(6):3234-3236, 1990.
32. Pardini AW, Nguyen HT, Figlewicz DP y col. Distribution of insulin receptor substrate-2 in brain areas involved in energy homeostasis. Brain Res 1112(1):169-178, 2006.
33. Pastorello M, Israel A. Papel de la angiotensina II en la resistencia a la insulina neuronal en un modelo experimental de diabetes tipo 2 en ratas. Diabetes Intern 3(4):88-97, 2011.
34. Srinivasan K, Viswanad B, Asrat L, Kaul CL, Ramarao P. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res 52(4):313-320, 2005.
35. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 22(9):1462-1470, 1999.
36. Belfiore F, Iannello S, Camuto M, Fagone S, Cavaleri A. Insulin sensitivity of blood glucose versus insulin sensitivity of blood free fatty acids in normal, obese, and obese-diabetic subjects. Metabolism 50:573-582, 2001.
37. Furugen M, Saitoh S, Ohnishi H, y col. Matsuda-DeFronzo insulin sensitivity index is a better predictor than HOMA-IR of hypertension in Japanese: the Tanno-Sobetsu study. J Hum Hypertens 26(5):325-333, 2012.
38. Pacini G, Omar B, Ahrén B. Methods and models for metabolic assessment in mice. J Diabetes Res 2013.
39. Watanabe Y, Nakayama K, Taniuchi N, Horai, Y y col. Beneficial effects of canagliflozin in combination with pioglitazone on insulin sensitivity in rodent models of obese type 2 diabetes. PLoS one 23:10(1):e0116851, 2015.
40. Berne C, Pollare T, Lithell H. Effects of antihypertensive treatment oninsulin sensitivity with special reference to ACE inhibitors. Diabetes Care 14(Suppl 4):39-47, 1991.
41. Paolisso G, Tagliamonte MR, Gambardella A y col. Losartan mediated improvement in insulin action is mainly due to an increase in non-oxidative glucose metabolism and blood flow in insulin-resistant hypertensive patients. J Hum Hypertens 11(5):307-312, 1997.
42. Kodama J, Katayama S, Tanaka K, Itabashi A, Kawazu S, Ishii J. Effect of captopril on glucose concentration. Possible role of augmented postprandial forearm blood flow. Diabetes Care 13:1109-1111, 1990.
43. Velloso LA, Folli F, Sun XJ, White MF, Saad MJ, Kahn CR. Cross-talk between the insulin and angiotensin signaling systems. Proc Natl Acad Sci USA 93(22):12490-12495, 1996.
44. Janke J, Engeli S, Gorzelniak K, Luft FC, Sharma AM. Mature adipocytes inhibiting in vitro differentiation of human preadipocytes via angiotensin type 1 receptors. Diabetes 51(6):1699-1707, 2002.
45. Van der Zijl NJ, Serné EH, Goossens y col. Valsartan-induced improvement in insulin sensitivity is not paralleled by changes in microvascular function in individuals with impaired glucose metabolism. J Hypertens 29(10):1955-1962, 2011.
46. Festa A, D'Agostino R Jr, Howard G, Mykkänen L, Tracy RP, Haffner SM. Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS). Circulation 102(1):42-47, 2000.
47. Festa A, D'Agostino R Jr, Tracy RP, Haffner SM. Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes 51(4):1131-1137, 2002.
48. Temelkova-Kurktschiev T, Siegert G, Bergmann S, Henkel E, Koehler C, Jaross W, Hanefeld M. Subclinical inflammation is strongly related to insulin resistance but not to impaired insulin secretion in a high risk population for diabetes. Metabolism 51(6):743-749, 2002.
49. Pradhan AD, Cook NR, Manson JE, Ridker PM, Buring JE. A randomized trial of low-dose aspirin in the prevention of clinical type 2 diabetes in women. Diabetes Care 32(1):3-8, 2009.
50. Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest 116(7):1793-1801, 2006.
51. Ramasamy R, Vannucci SJ, Yan SS, Herold K, Yan SF, Schmidt AM. Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration and inflammation. Glycobiology 15(7):16R-28R, 2005.
52. Lagathu C, Yvan-Charvet L, Bastard JP, Maachi M, Quignard-Boulangé A, Capeau J, Caron M. Long-term treatment with interleukin-1beta induces insulin resistance in murine and human adipocytes. Diabetologia 49(9):2162-2173, 2006.
53. Dinarello CA, Donath MY, Mandrup-Poulsen T. Role of IL-1beta in type 2 diabetes. Curr Opin Endocrinol Diabetes Obes 17(4):314-321, 2010.
54. Wolpe SD, Davatelis G, Sherry B y col. Macrophages secrete a novel heparin-binding protein with inflammatory and neutrophil chemokinetic properties. J Exp Med 167(2):570-581, 1988.
55. Dai Q, Xu M, Yao M, Sun B. Angiotensin AT1 receptor antagonists exert anti-inflammatory effects in spontaneously hypertensive rats. Brit J Pharmacol 152:1042-1048, 2007.
56. Lam TK, Gutierrez-Juarez R, Pocai A, Rossetti L. Regulation of blood glucose by hypothalamic pyruvate metabolism. Science 309(5736):943-947, 2005.
57. Folli F, Kahn CR, Hansen H, Bouchie JL, Feener EP. Angiotensin II inhibits insulin signaling in aortic smooth muscle cells at multiple levels. A potential role for serine phosphorylation in insulin/angiotensin II crosstalk. J Clin Invest 100(9):2158-2169, 1997.
58. Herings RM, de Boer A, Stricker BH, Leufkens HG, Porsius A. Hypoglycaemia associated with use of inhibitors of angiotensin converting enzyme. Lancet 345(8959):1195-1198, 1995.
59. Leoir LF. Regulation of glycogen metabolism. Natl Cancer Inst Monogr 27:3-18, 1967.
60. Belocopitow E. Regulation of glucose metabolism by adrenalin and the calcium ion. Acta Physiol Lat Am 16:42-48, 1966.
61. Ruiz-Gayo M, Somoza B, Bravo R, Fernández-Alfonso MS, González C. Chronic losartan treatment decreases angiotensin II-mediated facilitation of noradrenaline release in the caudal artery of spontaneously hypertensive rats. Life Sci 67(26):3153-3162, 2000.
62. Lindmark S, Wiklund U, Bjerle P, Eriksson JW. Does the autonomic nervous system play a role in the development of insulin resistance? A study on heart rate variability in first-degree relatives of Type 2 diabetes patients and control subjects. Diabet Med 20:399-405, 2003.
63. Sasaki K, Kushiro T, Nakagawa S, Kanmatsuse K. Effects of angiotensin II receptor antagonist on insulin sensitivity and sympathetic activity in spontaneously hypertensive rats. Nihon Jinzo Gakkai Shi 41(7):692-696, 1999.
64. Chan P, Wong KL, Liu IM, Tzeng TF, Yang TL, Cheng JT. Antihyperglycemic action of angiotensin II receptor antagonist, valsartan, in streptozotocin-induced diabetic rats. J Hypertension 21(4):761-769, 2003.

 
 
 
 
 
 
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
Artículos relacionadosMás relacionadosAtículos relacionados
PRONÓSTICO DE INSUFICIENCIA CARDÍACA Y SU RELACIÓN CON COMORBILIDADES PREVALENTES
European Journal of Preventive Cardiology 27(2-Suppl):27-34
Difundido en siicsalud: 5 oct 2021
DIABETES TIPO 1 EN LA REGIÓN DE LOMBARDÍA, ITALIA, DURANTE LA PANDEMIA DE COVID-19
EclinicalMedicine 39(101067):1-6
Difundido en siicsalud: 8 oct 2021
MANIFESTACIONES CUTÁNEAS EN NIÑOS CON DIABETES TIPO 1
Turkderm - Turkish Archives of Dermatology and Venerology 55:22-26
Difundido en siicsalud: 15 sep 2021
ua31618
-->