Artículos relacionadosArtículos relacionadosArtículos relacionados
Artículos afines de siicsalud publicados en los últimos 4 meses
TAMSULOSINA MÁS LEVOFLOXACINA Y CICATRIZACIÓN DE HERIDAS EN LA PROSTATITIS CRÓNICA
International Wound Journal 21(1):1-8
Difundido en siicsalud: 28 mar 2024
DIFERENTES TRATAMIENTOS LOCALES PARA LAS ÚLCERAS DEL PIE DIABÉTICO
Journal of Clinical Medicine 12(10):1-11
Difundido en siicsalud: 30 jul 2024

LOS PEPTIDOS ANTIMICROBIANOS Y SUS BENEFICIOS EN EL TRATAMIENTO DE LAS ULCERAS DE PIE DIABETICO

(especial para SIIC © Derechos reservados)
En la presente revisión se analiza, sobre la base de los estudios realizados tanto in vivo como in vitro el posible uso de péptidos antimicrobianos y sus inductores en el tratamiento de úlceras de pie diabético.
Autor:
Irma Elizabeth Gonzalez Curiel
Columnista Experto de SIIC

Institución:
Universidad Autonoma de Zacatecas


Artículos publicados por Irma Elizabeth Gonzalez Curiel
Artículo comentado
Lorenzo Angel Marovelli
Jefe, Hospital Juan A. Fernández, Buenos Aires, Argentina
Coautor
Bruno Rivas-Santiago* 
Médico, Instituto Mexicano del Seguro Social, Zacatecas, México*
Recepción del artículo
28 de Enero, 2019
Aprobación
24 de Abril, 2019
Primera edición
30 de Abril, 2019
Segunda edición, ampliada y corregida
7 de Junio, 2021

Resumen
La úlcera de pie diabético es una de las complicaciones más importantes de la diabetes mellitus tipo 2; de hecho, hasta un 30% de los pacientes diabéticos presentan esta complicación. En los últimos años se han implementado nuevas terapias para tratar de promover la rápida cicatrización de este tipo de úlceras, enfocándose en la terapia antibiótica, el restablecimiento de la vascularización, la inducción de la cicatrización y contrarrestar la neuropatía. Los péptidos antimicrobianos son moléculas versátiles que inducen cicatrización, tienen actividad antimicrobiana y además promueven angiogénesis; dadas estas propiedades se ha propuesto su uso como adyuvantes en la terapia de las úlceras de pie diabético. Con el fin de evitar costos excesivos en el tratamiento de las úlceras diabéticas con el uso AMP sintéticos, algunos grupos de investigación han optado por inducir péptidos con moléculas exógenas. Existen muchas moléculas capaces de inducir péptidos antimicrobianos tanto en células sanguíneas como en células epiteliales. La investigación en el uso de AMP como coadyuvantes en el tratamiento de las úlceras de pie diabético sigue avanzando en varias líneas de investigación: síntesis de péptidos con actividades angiogénicas específicas, uso de péptidos de insectos o anfibios, así como el uso de péptidos sintéticos. En la presente revisión se analiza, sobre la base de los estudios realizados tanto in vivo como in vitro el posible uso de AMP y sus inductores en el tratamiento de úlceras de pie diabético.

Palabras clave
úlcera de pie diabetico, péptidos antimicrobianos, cicatrización, angiogénesis, terapia


Artículo completo

(castellano)
Extensión:  +/-6.68 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
Diabetic foot ulcers are one of the most important complications of diabetes mellitus type 2. In fact, up to 30% of diabetic patients develop this complication. In recent years new therapies have been implemented to try to promote rapid healing in this type of ulcers, focusing on antibiotic therapy, restoration of vascularization, induction of healing and counteracting neuropathy. Antimicrobial peptides are versatile molecules that induce wound healing, have antimicrobial activity and also promote angiogenesis. Because of these properties, they have been proposed as adjuvants in the therapy for diabetic foot ulcers. In order to avoid excessive costs in the treatment of diabetic ulcers with the use of synthetic AMP, some research groups have chosen to induce peptides with exogenous molecules. Many molecules are capable of inducing antimicrobial peptides both in blood cells and in endothelial cells. Research into the use of AMP as adjuvants in the treatment of diabetic foot ulcers continues in several lines of research, such as synthesis of peptides with specific angiogenic activities, use of peptides from insects or amphibians, as well as the use of synthetic peptides. In the present review, we analyze the possible use of AMP and their inducers in the treatment of diabetic foot ulcers based on the reported studies either in vivo or in vitro.

Key words
diabetic foot ulcer, antimicrobial peptides, wound healing, angiogenesis, therapy


Clasificación en siicsalud
Artículos originales > Expertos de Iberoamérica >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Diabetología, Medicina Interna
Relacionadas: Dermatología, Endocrinología y Metabolismo, Farmacología, Inmunología



Comprar este artículo
Extensión: 6.68 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Enviar correspondencia a:
Bruno Rivas-Santiago, 98000, Interior de la Alameda#45, Zacatecas, México
Bibliografía del artículo
1. Haddad JA, Haddad AN. The past decade in type 2 diabetes and future challenges. Hormones (Athens) 17(4):451-459, 2018.
2. Cho NH, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 138:271-281, 2018.
3. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 414(6865):813-20, 2001.
4. Hurlow JJ, et al. Diabetic foot infection: A critical complication. Int Wound J 15(5):814-821, 2018.
5. Ahmad J. The diabetic foot. Diabetes Metab Syndr 10(1):48-60, 2016.
6. Rivas-Santiago B, Torres-Juarez F. Antimicrobial peptides for the treatment of pulmonary tuberculosis, allies or foes? Curr Pharm Des 24(10):1138-1147, 2018.
7. Lowry MB, et al. Regulation of the human cathelicidin antimicrobial peptide gene by 1alpha,25-dihydroxyvitamin D3 in primary immune cells. J Steroid Biochem Mol Biol 143:183-91, 2014.
8. Yasir M, Willcox MDP, Dutta D. Action of antimicrobial peptides against bacterial biofilms. Materials (Basel) 11(12), 2018.
9. Bechinger B, Gorr SU. Antimicrobial peptides: mechanisms of action and resistance. J Dent Res 96(3):254-260, 2017.
10. Rivas-Santiago B, Hernández-Pando R, Tsutsumi V. Péptidos antimicrobianos en la inmunidad innata de enfermedades infecciosas. Salud Publica Mex 48(1):62-71, 2006.
11. Kaplan JM. Little peptide, big effects: the role of LL-37 in inflammation and autoimmune disease. The Journal of Immunology 191(10), 2013.
12. Niyonsaba F, et al. Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J Invest Dermatol 127(3):594-604, 2007.
13. Mangoni ML, McDermott AM, Zasloff M. Antimicrobial peptides and wound healing: biological and therapeutic considerations. Exp Dermatol 25(3):167-73, 2016.
14. Semple F, et al. Human beta-defensin 3 affects the activity of pro-inflammatory pathways associated with MyD88 and TRIF. Eur J Immunol 41(11):3291-300, 2011.
15. Herman A, Herman AP. Antimicrobial peptides activity in the skin. Skin Res Technol 2018.
16. Nizet V. et al. Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414(6862):454-7, 2001.
17. Chamorro CI, et al. The human antimicrobial peptide LL-37 suppresses apoptosis in keratinocytes. J Invest Dermatol 129(4):937-44, 2009.
18. Koczulla R, et al. An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest 111(11):1665-72, 2003.
19. Klil-Drori AJ, Azoulay L, Pollak MN. Cancer, obesity, diabetes, and antidiabetic drugs: is the fog clearing? Nat Rev Clin Oncol 14(2):85-99, 2017.
20. Zuniga JA, et al. The impact of diabetes on CD4 recovery in persons with HIV in an urban clinic in the United States. Int J STD AIDS 29(1):63-71, 2018.
21. Gonzalez-Curiel I, et al. Differential expression of antimicrobial peptides in active and latent tuberculosis and its relationship with diabetes mellitus. Hum Immunol 72(8):656-62, 2011.
22. Montoya-Rosales A, et al. Glucose levels affect LL-37 expression in monocyte-derived macrophages altering the Mycobacterium tuberculosis intracellular growth control. Microb Pathog 97:148-53, 2016.
23. Frydrych LM, et al. Obesity and type 2 diabetes mellitus drive immune dysfunction, infection development, and sepsis mortality. J Leukoc Biol 104(3):525-534, 2018.
24. Herrera MT, et al. Low serum vitamin D levels in type 2 diabetes patients are associated with decreased mycobacterial activity. BMC Infect Dis 17(1):610, 2017.
25. Lopez-Lopez N, et al. Vitamin D supplementation promotes macrophages' anti-mycobacterial activity in type 2 diabetes mellitus patients with low vitamin D receptor expression. Microbes Infect 16(9):755-61, 2014.
26. Zhan Y, Jiang L. Status of vitamin D, antimicrobial peptide cathelicidin and T helper-associated cytokines in patients with diabetes mellitus and pulmonary tuberculosis. Exp Ther Med 9(1):11-16, 2015.
27. Rivas-Santiago B. et al. Expression of antimicrobial peptides in diabetic foot ulcer. J Dermatol Sci 65(1):19-26, 2012.
28. Carretero M, et al. In vitro and in vivo wound healing-promoting activities of human cathelicidin LL-37. J Invest Dermatol 128(1):223-36, 2008.
29. Ramos R, et al. Wound healing activity of the human antimicrobial peptide LL37. Peptides 32(7):1469-76, 2011.
30. Steinstraesser L, et al. Innate defense regulator peptide 1018 in wound healing and wound infection. PLoS One 7(8):e39373, 2012.
31. Marin-Luevano P, et al. Induction by innate defence regulator peptide 1018 of pro-angiogenic molecules and endothelial cell migration in a high glucose environment. Peptides 101:135-144, 2018.
32. Chang M. Restructuring of the extracellular matrix in diabetic wounds and healing: A perspective. Pharmacol Res 107:243-248, 2016.
33. Gronberg A, Zettergren L, Agren MS. Stability of the cathelicidin peptide LL-37 in a non-healing wound environment. Acta Derm Venereol 91(5):511-5, 2011.
34. Gronberg A, et al. Treatment with LL-37 is safe and effective in enhancing healing of hard-to-heal venous leg ulcers: a randomized, placebo-controlled clinical trial. Wound Repair Regen 22(5):613-21, 2014.
35. Castaneda-Delgado JE, et al. Vitamin D and L-isoleucine promote antimicrobial peptide hBD-2 production in peripheral blood mononuclear cells from elderly individuals. Int J Vitam Nutr Res 86(1-2):56-61, 2016.
36. Kulkarni NN, et al. Phenylbutyrate induces cathelicidin expression via the vitamin D receptor: Linkage to inflammatory and growth factor cytokines pathways. Mol Immunol 63(2):530-9, 2015.
37. Gonzalez-Curiel I, et al. 1,25-dihydroxyvitamin D3 induces LL-37 and HBD-2 production in keratinocytes from diabetic foot ulcers promoting wound healing: an in vitro model. PLoS One 9(10):e111355, 2014.
38. Trujillo V, et al. Calcitriol promotes proangiogenic molecules in keratinocytes in a diabetic foot ulcer model. J Steroid Biochem Mol Biol 174:303-311, 2017.
39. Lopez-Lopez N, et al. Expression and vitamin D-mediated regulation of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in healthy skin and in diabetic foot ulcers. Arch Dermatol Res 306(9):809-21, 2014.
40. Gomes A, et al. Wound-healing peptides for treatment of chronic diabetic foot ulcers and other infected skin injuries. Molecules 22(10), 2017.
41. Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A 84(15):5449-53, 1987.
42. Lipsky BA, Holroyd KJ, Zasloff M. Topical versus systemic antimicrobial therapy for treating mildly infected diabetic foot ulcers: a randomized, controlled, double-blinded, multicenter trial of pexiganan cream. Clin Infect Dis 47(12):1537-45, 2008.
43. Liu H, et al. A short peptide from frog skin accelerates diabetic wound healing. FEBS J 281(20):4633-43, 2014.
44. Di Grazia A, et al. The frog skin-derived antimicrobial peptide esculentin-1a(1-21)NH2 promotes the migration of human HaCaT keratinocytes in an EGF receptor-dependent manner: a novel promoter of human skin wound healing? PLoS One 10(6):e0128663, 2015.
45. E MCC, et al. Komodo dragon-inspired synthetic peptide DRGN-1 promotes wound-healing of a mixed-biofilm infected wound. NPJ Biofilms Microbiomes 3:9, 2017.
46. Kim DJ, et al. Efficacy of the designer antimicrobial peptide SHAP1 in wound healing and wound infection. Amino Acids 46(10):2333-43, 2014.
47. Mu L, et al. A potential wound-healing-promoting peptide from salamander skin. FASEB J 28(9):3919-29, 2014.
48. Pfalzgraff A, et al. Synthetic antimicrobial and LPS-neutralising peptides suppress inflammatory and immune responses in skin cells and promote keratinocyte migration. Sci Rep 6:31577, 2016.
49. Tomioka H, et al. Novel anti-microbial peptide SR-0379 accelerates wound healing via the PI3 kinase/Akt/mTOR pathway. PLoS One 9(3):e92597, 2014.

 
 
 
 
 
 
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
ua31618