MICRONUTRIENTES: UN ESLABON CLAVE EN LA INMUNOPATOGENESIS DE LA LEPRA

(especial para SIIC © Derechos reservados)
La inmunopatogénesis de la lepra aún representa un reto para los investigadores, y un eslabón faltante en su comprensión es el estudio de los micronutrientes, los cuales se ha demostrado que tienen la capacidad de modular la respuesta inmune innata y adaptativa.
Autor:
Héctor Serrano Coll
Columnista Experta de SIIC

Institución:
Universidad CES


Artículos publicados por Héctor Serrano Coll
Coautores
Liliana Acevedo Sáenz* Nora Cardona Castro** 
Microbióloga PhD, Universidad CES, Medellin, Colombia*
Médica, Instituto Colombiano de Medicina Tropical - Universidad CES, Sabaneta, Colombia**
Recepción del artículo
20 de Junio, 2019
Aprobación
9 de Septiembre, 2019
Primera edición
16 de Septiembre, 2019
Segunda edición, ampliada y corregida
15 de Noviembre, 2022

Resumen
La lepra es una enfermedad infecciosa crónica causada por Mycobacterium leprae, la cual tiene una notoria afinidad por la piel y los troncos nerviosos periféricos. Esta enfermedad se caracteriza por tener una clínica polimorfa que depende de la respuesta inmune del hospedero. La inmunopatogénesis de esta enfermedad aún representa un reto para los investigadores, y un eslabón faltante en su comprensión es el estudio de los micronutrientes, los cuales se ha demostrado que tienen la capacidad de modular la respuesta inmune innata y adaptativa. El objetivo de esta revisión es describir y relacionar algunos nutrientes, como las vitaminas A, D, E, C y B6, el folato, el zinc y el hierro, con la respuesta inmune en la lepra. Además, proponemos que algunos micronutrientes (vitaminas A, D y C y zinc) serían importantes para mitigar la aparición de reacciones lepróticas por medio de la modulación de la respuesta inmune en el hospedero infectado por M. leprae, y que micronutrientes como las vitaminas A, D, B6 y D, el folato, el hierro y el zinc serían importantes para reducir la incidencia de la lepra, dado que promoverían una mejor respuesta inmune en convivientes. Por lo tanto, el estudio del estado nutricional y el aporte suplementario con micronutrientes en convivientes y en afectados con lepra sería clave en la eliminación de esta enfermedad que ha deformado cuerpos y ha destruido sueños a lo largo de los siglos.

Palabras clave
lepra, vitaminas, inmunidad, estrés oxidativo, inflamación


Artículo completo

(castellano)
Extensión:  +/-7.94 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
The purpose of this work was to analyze the prevalence of fetal mortality (FM) in mothers in early adolescence (10-14 years), late adolescence (15-19 years) and in adults (20-34 years), during the period 2014-2016, in the North Department of Santander-Colombia. The factors taken into account were: gestation time, fetal weight, childbirth, basic causes, area of residence, and educational level of the mothers. Method: The study was retrospective, correlational, analytical-comparative. The database was from a secondary public access source of the National Administrative Department of Statistics (DANE-Colombia). The analysis was performed using the following tests: chi-square, Kruskal-Wallis H, Cramer's V coefficient, Goodman and Kruskal's gamma, Tukey's post-hoc procedures and the Bonferroni method based on Student's t-test. Results: The prevalence of FM for the years 2014-2016 was 10.0 per 1000 live births in mothers in early adolescence, 19.2 in mothers in late adolescence and 18.6 in adult mothers. It emerged that the prevalence of FM in pregnancies of under 22 weeks was higher in adult mothers, before delivery and during childbirth (chi-square = 32.023; p = 0.021), and there was a slight negative relationship between mother's age and weight of the fetus (gamma = -0.186; p = 0.014). The prevalence of FM was higher in adult mothers residing in the municipal district (chi-square = 80.18; p = 0.000), in mothers with primary, secondary and professional-level basic education (chi-square = 105.56; p = 0.000), and greater in adult mothers due to obstetric complications and birth trauma.

Key words
leprosy, vitamins, immunity, oxidative stress, inflamation


Clasificación en siicsalud
Artículos originales > Expertos de Iberoamérica >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Infectología, Nutrición
Relacionadas: Dermatología, Epidemiología, Genética Humana, Inmunología, Salud Pública



Comprar este artículo
Extensión: 7.94 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Enviar correspondencia a:
Nora Cardona Castro, 0000, Cra 43 A # 52 Sur 99, Sabaneta, Colombia
Patrocinio y reconocimiento:
Este trabajo recibió soporte financiero para Héctor Serrano-Coll (beca Colciencias 727-2015).
Bibliografía del artículo
1. Véras LST, Vale RGS, Mello DB de, Castro JAF de, Lima V, Silva KNG da, et al. Degree of disability, pain levels, muscle strength, and electromyographic function in patients with Hansen's disease with common peroneal nerve damage. Rev Soc Bras Med Trop 45(3):375-379, 2012.
2. Blanco Córdova CA, Cangas García T. Lepra: Impacto psicosocial. Enferm Glob 11(25):287-298, 2012.
3. Gaschignard J, Grant AV, Thuc NV, Orlova M, Cobat A, Huong NT, et al. Pauci- and Multibacillary Leprosy: Two Distinct, Genetically Neglected Diseases. PLoS Negl Trop Dis 10(5):e0004345, 2016.
4. Talhari S, Garrido N, Oliveira G, Leide M. Hanseníase. 4ª ed.; 2006. Pp. 216.
5. World Health Organization. The state of food securuty and nutrition in the world [Internet]. 2017. Disponible en: http://www.fao.org/3/a-I7787e.pdf
6. Bailey RL, West KP, Black RE. The epidemiology of global micronutrient deficiencies. Ann Nutr Metab 66(Suppl 2):22-33, 2015.
7. Nsagha DS, Bamgboye EA, Assob JCN, Njunda AL, Kamga HLF, Zoung-Kanyi Bissek A-C, et al. Elimination of leprosy as a public health problem by 2000 AD: an epidemiological perspective. Pan Afr Med J 9:4, 2011.
8. Cardona-Castro N, Beltrán-Alzate JC, Manrique-Hernández R. Survey to identify Mycobacterium leprae-infected household contacts of patients from prevalent regions of leprosy in Colombia. Mem Inst Oswaldo Cruz 103(4):332-336, 2008.
9. Ministerio de Salud y Protección social Colombia. Guía de atención integral de la lepra. 2012. Disponible en: www.minsalud.gov.co/Documentos%20y%20Publicaciones/GUIA%20DE%20ATENCI%C3%93N%20DE%20LEPRA.pdf.
10. Duthie MS, Balagon MF. Combination chemoprophylaxis and immunoprophylaxis in reducing the incidence of leprosy. Risk Manag Healthc Policy 9:43-53, 2016.
11. Passos Vázquez CM, Mendes Netto RS, Ferreira Barbosa KB, Rodrigues de Moura T, de Almeida RP, Duthie MS, et al. Micronutrients influencing the immune response in leprosy. Nutr Hosp 29(1):26-36, 2014.
12. Kaminogawa S, Nanno M. Modulation of Immune Functions by Foods. Evid Based Complement Alternat Med 1(3):241-250, 2004.
13. Maggini S, Wintergerst ES, Beveridge S, Hornig DH. Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. Br J Nutr 98(Suppl 1):S29-35, 2007.
14. Raffe SF, Thapa M, Khadge S, Tamang K, Hagge D, Lockwood DNJ. Diagnosis and treatment of leprosy reactions in integrated services--the patients' perspective in Nepal. PLoS Negl Trop Dis 7(3):e2089, 2013.
15. Lastória JC, Abreu MAMM de. Leprosy: review of the epidemiological, clinical, and etiopathogenic aspects - part 1. An Bras Dermatol 89(2):205-218, 2014.
16. Gilbert C. What is vitamin A and why do we need it? Community Eye Health 26(84):65, 2013.
17. Mora JR, Iwata M, von Andrian UH. Vitamin effects on the immune system: vitamins A and D take centre stage. Nat Rev Immunol 8(9):685-698, 2008.
18. Institute of Medicine (US) Panel on Micronutrients. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc [Internet]. Washington (DC): National Academies Press (US); 2001. Disponible en: www.ncbi.nlm.nih.gov/books/NBK222310/
19. Villamor E, Fawzi WW. Effects of vitamin a supplementation on immune responses and correlation with clinical outcomes. Clin Microbiol Rev 18(3):446-464, 2005.
20. Iwata M, Eshima Y, Kagechika H. Retinoic acids exert direct effects on T cells to suppress Th1 development and enhance Th2 development via retinoic acid receptors. Int Immunol 15(8):1017-1025, 2003.
21. Hall JA, Cannons JL, Grainger JR, Dos Santos LM, Hand TW, Naik S, et al. Essential role for retinoic acid in the promotion of CD4( ) T cell effector responses via retinoic acid receptor alpha. Immunity 34(3):435-447, 2011.
22. Ross AC. Vitamin A and retinoic acid in T cell-related immunity. Am J Clin Nutr 96(5):1166S-1172S, 2012.
23. Hosomi K, Kunisawa J. The Specific Roles of Vitamins in the Regulation of Immunosurveillance and Maintenance of Immunologic Homeostasis in the Gut. Immune Netw 17(1):13-19, 2017.
24. Bover J, Egido J, Fernández-Giráldez E, Praga M, Solozábal C, Torregrosa J, et al. Vitamina D, receptor de la vitamina D e importancia de su activación en el paciente con enfermedad renal crónica; 2015. Disponible en: http://scielo.isciii.es/pdf/nefrologia/v35n1/articulo_especial.pdf
25. Kulie T, Groff A, Redmer J, Hounshell J, Schrager S. Vitamin D: an evidence-based review. J Am Board Fam Med JABFM 22(6):698-706, 2009.
26. Aranow C. Vitamin D and the Immune System. J Investig Med Off Publ Am Fed Clin Res 59(6):881-886, 2011.
27. Chun RF, Liu PT, Modlin RL, Adams JS, Hewison M. Impact of vitamin D on immune function: lessons learned from genome-wide analysis. Front Physiol 5:151, 2104.
28. Cantorna MT, Snyder L, Lin Y-D, Yang L. Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients 7(4):3011-3021, 2015.
29. Kongsbak M, Levring TB, Geisler C, von Essen MR. The vitamin d receptor and T cell function. Front Immunol 4:148, 2013.
30. Lu'ng K vinh quôc, Nguyên LTH. Role of the vitamin D in leprosy. Am J Med Sci 343(6):471-482, 2012.
31. Mandal D, Reja AHH, Biswas N, Bhattacharyya P, Patra PK, Bhattacharya B. Vitamin D receptor expression levels determine the severity and complexity of disease progression among leprosy reaction patients. New Microbes New Infect 6:35-39, 2015.
32. Rizvi S, Raza ST, Ahmed F, Ahmad A, Abbas S, Mahdi F. The Role of Vitamin E in Human Health and Some Diseases. Sultan Qaboos Univ Med J 14(2):e157-165, 2014.
33. Leonhardt M, Gebert S, Wenk C. Vitamin E content of different animal products: influence of animal nutrition. Z Ernahrungswiss 36(1):23-27, 1997.
34. Keen MA, Hassan I. Vitamin E in dermatology. Indian Dermatol Online J 7(4):311-315, 2016.
35. Han SN, Wu D, Ha WK, Beharka A, Smith DE, Bender BS, et al. Vitamin E supplementation increases T helper 1 cytokine production in old mice infected with influenza virus. Immunology 100(4):487-493, 2000.
36. Wintergerst ES, Maggini S, Hornig DH. Contribution of selected vitamins and trace elements to immune function. Ann Nutr Metab 51(4):301-323, 2007.
37. Swathi M, Tagore R. Study of Oxidative Stress in Different Forms of Leprosy. Indian J Dermatol 60(3):321, 2015.
38. Stover PJ, Field MS. Vitamin B-6. Adv Nutr 6(1):132-133, 2015.
39. Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. [Internet]. National Academies Press (US); 1998. Disponible en: www.ncbi.nlm.nih.gov/books/NBK114313/
40. Qian B, Shen S, Zhang J, Jing P. Effects of Vitamin B6 Deficiency on the Composition and Functional Potential of T Cell Populations. J Immunol Res 2017:2197975, 2017.
41. Greenberg JA, Bell SJ, Guan Y, Yu Y. Folic Acid Supplementation and Pregnancy: More Than Just Neural Tube Defect Prevention. Rev Obstet Gynecol 4(2):52-59, 2011.
42. Carr AC, Vissers MCM. Synthetic or Food-Derived Vitamin C-Are They Equally Bioavailable? Nutrients 5(11):4284-4304, 2013.
43. Brito A, Hertrampf E, Olivares M, Gaitán D, Sánchez H, Allen LH, et al. Folatos y vitamina B12 en la salud humana. Rev Médica Chile 140(11):1464-1475, 2012.
44. Kowalska M, Cichosz G. Dairy products as source of folates. Pol Merkur Lek Organ Pol Tow Lek 36(214):287-290, 2014.
45. Lykkesfeldt J, Michels AJ, Frei B. Vitamin C. Adv Nutr 5(1):16-18, 2014.
46. Sharma P. Vitamin C Rich Fruits Can Prevent Heart Disease. Indian J Clin Biochem 28(3):213-214, 2013.
47. Popovic LM, Mitic NR, Miric D, Bisevac B, Miric M, Popovic B. Influence of vitamin C supplementation on oxidative stress and neutrophil inflammatory response in acute and regular exercise. Oxid Med Cell Longev 2015:295497, 2015.
48. Gupta M, Mahajan VK, Mehta KS, Chauhan PS. Zinc Therapy in Dermatology: A Review. Dermatol Res Pract, 2014. Disponible en: www.ncbi.nlm.nih.gov/pmc/articles/PMC4120804/
49. Lönnerdal B. Dietary factors influencing zinc absorption. J Nutr 130(5S Suppl):1378S-1383S, 2000.
50. Roohani N, Hurrell R, Kelishadi R, Schulin R. Zinc and its importance for human health: An integrative review. J Res Med Sci Off J Isfahan Univ Med Sci 18(2):144-157, 2013.
51. Marcos A. Inmunonutrición en la salud y la enfermedad. Panamericana; 2011.
52. Prasad AS. Zinc in Human Health: Effect of Zinc on Immune Cells. Mol Med 14(5-6):353-357, 2008.
53. Hojyo S, Fukada T. Roles of Zinc Signaling in the Immune System. J Immunol Res, 2016. Disponible en: www.ncbi.nlm.nih.gov/pmc/articles/PMC5107842/
54. Mahajan PM, Jadhav VH, Patki AH, Jogaikar DG, Mehta JM. Oral zinc therapy in recurrent erythema nodosum leprosum: a clinical study. Indian J Lepr 66(1):51-57, 1994.
55. Johnson-Wimbley TD, Graham DY. Diagnosis and management of iron deficiency anemia in the 21st century. Ther Adv Gastroenterol 4(3):177-184, 2011.
56. Oppenheimer SJ. Iron and its relation to immunity and infectious disease. J Nutrv131(2S-2):616S-633S, 2001.
57. Cherayil BJ. The role of iron in the immune response to bacterial infection. Immunol Res 50(1):1-9, 2011.
58. Moet FJ, Pahan D, Oskam L, Richardus JH, COLEP Study Group. Effectiveness of single dose rifampicin in preventing leprosy in close contacts of patients with newly diagnosed leprosy: cluster randomised controlled trial. BMJ 336(7647):761-764, 2008.
59. da Cunha SS, Bierrenbach AL, Barreto VHL. Chemoprophylaxis to control leprosy and the perspective of its implementation in Brazil: a primer for non-epidemiologists. Rev Inst Med Trop São Paulo 57(6):481-487, 2015.
60. Walker SL, Lebas E, Doni SN, Lockwood DNJ, Lambert SM. The mortality associated with erythema nodosum leprosum in Ethiopia: a retrospective hospital-based study. PLoS Negl Trop Dis 8(3):e2690, 2014.
61. White C, Franco-Paredes C. Leprosy in the 21st century. Clin Microbiol Rev 28(1):80-94, 2015.
62. Smith WCS, Anderson AM, Withington SG, van Brakel WH, Croft RP, Nicholls PG, et al. Steroid prophylaxis for prevention of nerve function impairment in leprosy: randomised placebo controlled trial (TRIPOD 1). BMJ 328(7454):1459, 2004.
63. Vargesson N. Thalidomide-induced teratogenesis: history and mechanisms. Birth Defects Res Part C Embryo Today Rev 105(2):140-156, 2015.
64. Kahawita IP, Walker SL, Lockwood DNJ. Leprosy type 1 reactions and erythema nodosum leprosum. An Bras Dermatol 83(1):75-82, 2008.
65. Fonseca AB de L, Simon M do V, Cazzaniga RA, de Moura TR, de Almeida RP, Duthie MS, et al. The influence of innate and adaptative immune responses on the differential clinical outcomes of leprosy. Infect Dis Poverty, 2017. Disponible en: www.ncbi.nlm.nih.gov/pmc/articles/PMC5292790/
66. Foster M, Samman S. Zinc and Regulation of Inflammatory Cytokines: Implications for Cardiometabolic Disease. Nutrients 4(7):676-694, 2012.
67. Mabeyo PE, Manoko MLK, Gruhonjic A, Fitzpatrick PA, Landberg G, Erdélyi M, et al. Selenium Accumulating Leafy Vegetables Are a Potential Source of Functional Foods. Int J Food Sci, 2015. Disponible en: www.ncbi.nlm.nih.gov/pmc/articles/PMC4756630/


 
 
 
 
 
 
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
ua31618