EL EJE MICROBIOTA-INTESTINO-CEREBRO EN LA ENFERMEDAD DE PARKINSON

(especial para SIIC © Derechos reservados)
La comprensión de conceptos relacionados con el eje microbiota-intestino-cerebro son necesarias para saber cómo es la señalización en el sistema nervioso entérico y central. Existe una aproximación para encontrar marcadores moleculares y microbianos que puedan descifrar cuáles son los responsables de cada proceso fisiopatológico de la enfermedad de Parkinson, un mal que deteriora progresivamente la calidad de vida de muchas personas en nuestra sociedad.
Autor:
Rubén Eduardo Asalde Ramos
Columnista Experto de SIIC

Institución:
Universidad Católica Santo Toribio de Mogrovejo


Artículos publicados por Rubén Eduardo Asalde Ramos
Coautor
Pedro Jorge Chimoy Effio* 
Biólogo, Universidad Nacional Pedro Ruiz Gallo, Lambayeque, Perú*

Resumen
La enfermedad de Parkinson es producida por un proceso de muerte de neuronas dopaminérgicas en la sustancia negra, pars compacta del cerebro. Aunque su etiología es desconocida, el hallazgo de cuerpos de Lewy, constituidos por alfa sinucleína, en el intestino sugiere una fuente de producción microbiana que viaja hasta el sistema nervioso central, principalmente a través del nervio vago. Para comprender cómo funciona el eje microbiota-intestino-cerebro e influye en una persona sana o con enfermedad de Parkinson, se realizó una revisión sistemática de artículos científicos de los últimos cinco años en la base de datos Scopus. Se ha demostrado que la red de señalización que regula el eje microbiota-intestino-cerebro en una comunicación bidireccional está presente durante el neurodesarrollo del individuo y en el inicio de la enfermedad de Parkinson, por lo tanto, la microbiota representa la vía de entrada de factores internos que generan la desregulación de la comunicación y una disfunción neurológica. Como la diversidad de la microbiota cambia en diversas etapas del desarrollo del individuo por múltiples razones, como hábitos alimentarios, patrones de higiene, interacción con animales y parásitos, medicación, entre otros; es necesario conocer el estado de la microbiota actual, comprender cuál es su función en el sistema nervioso entérico e influencia en el sistema nervioso central, sobre todo si se trata de la etiopatogenia de enfermedades neurodegenerativas. El descubrimiento de biomarcadores de diagnóstico y una terapia neuroprotectora ayudará a mejorar la calidad de vida de personas con enfermedad de Parkinson.

Palabras clave
eje microbiota-intestino-cerebro, enfermedad de Parkinson, microbioma, producción microbiana, nervio vago


Artículo completo

(castellano)
Extensión:  +/-7.24 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
Parkinson's disease is caused by the death process of dopaminergic neurons in the substantia nigra, pars compacta of the brain. Although its etiology is unknown, the finding of Lewy bodies, formed by alpha-synuclein, in the intestine suggests a source of microbial production that travels to the central nervous system, mainly through the pneumogastric nerve. To understand how the microbiota-gut-brain axis works and influences a healthy person or person with Parkinson's disease, a systematic review of scientific articles from the last five years was carried out in the Scopus database. It has been shown that the signaling network that regulates the microbiota-gut-brain axis in a bidirectional communication network is present during the neurodevelopment of the individual and at the onset of Parkinson's disease, therefore, the microbiota represents the entry point of internal factors that disrupt communication and neurological dysfunction. As the diversity of the microbiota changes at various stages of the individual's development for multiple reasons, such as diet, hygiene patterns, interaction with animals and parasites, and medication, among other factors; it is necessary to know the state of the current microbiota, understand its function in the enteric nervous system and its influence on the central nervous system, especially if it is the etiopathogenesis of neurodegenerative diseases. The discovery of diagnostic biomarkers and neuroprotective therapies holds the promise of significantly improving the quality of life for individuals with Parkinson's disease.

Key words
microbiota-gut-brain axis, Parkinson's disease, microbiome, microbial production, vagus nerve


Clasificación en siicsalud
Artículos originales > Expertos de Iberoamérica >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Bioquímica, Neurología
Relacionadas: Gastroenterología, Inmunología, Medicina Interna, Nutrición, Salud Mental



Comprar este artículo
Extensión: 7.24 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Enviar correspondencia a:
Ruben Eduardo Asalde Ramos, , Universidad Católica Santo Toribio de Mogrovejo, Chiclayo, Perú
Bibliografía del artículo
1. Miller I. The gut-brain axis: historical reflections. Microb Ecol Health Dis 29(1):1542921, 2018.
2. Hashim ZA. Baacteriotherapy. J Res Pharm 27:1-3, 2023.
3. Lewandowska-Pietruszka Z, Figlerowicz M, Mazur-Melewska K. The History of the Intestinal Microbiota and the Gut-Brain Axis. Pathogens 11(12), 2022.
4. Qiao CM, Zhou Y, Quan W, Ma XY, Zhao LP, Shi Y, et al. Fecal Microbiota Transplantation from Aged Mice Render Recipient Mice Resistant to MPTP-Induced Nigrostriatal Degeneration Via a Neurogenesis-Dependent but Inflammation-Independent Manner. Neurotherapeutics 20(5):1405-26, 2023.
5. Wüllner U, Borghammer P, Choe CU, Csoti I, Falkenburger B, Gasser T, et al. The heterogeneity of Parkinson's disease. J Neural Transm 130(6):827-38, 2023.
6. Consentino C. Enfermedad de Parkinson. Una historia de doscientos años [Internet]. 1a ed. Lima-Perú: Fondo Editorial Comunicacional Colegio Médico del Perú [citado 24 de julio de 2024], 2022. Disponible en: https://repositorio.cmp.org.pe/handle/20.500.12971/76
7. Brooker SM, Naylor GE, Krainc D. Cell biology of Parkinson's disease: Mechanisms of synaptic, lysosomal, and mitochondrial dysfunction. Curr Opin Neurobiol [Internet] 85:102841, 2024. Disponible en: https://www.sciencedirect.com/science/article/pii/S0959438824000035
8. Singh K, Sethi P, Datta S, Chaudhary JS, Kumar S, Jain D, et al. Advances in gene therapy approaches targeting neuro-inflammation in neurodegenerative diseases. Ageing Res Rev [Internet] 98:102321, 2024. Disponible en: https://www.sciencedirect.com/science/article/pii/S1568163724001399
9. Yang J, Deng Y, Cai Y, Liu Y, Peng L, Luo Z, et al. Mapping trends and hotspot regarding gastrointestinal microbiome and neuroscience: A bibliometric analysis of global research (2002-2022). Front Neurosci16, 2022.
10. Berg G, Rybakova D, Fischer D, Cernava T, Vergès MCC, Charles T, et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8(1), 2020.
11. Yadav H, Jaldhi, Bhardwaj R, Anamika, Bakshi A, Gupta S, et al. Unveiling the role of gut-brain axis in regulating neurodegenerative diseases: A comprehensive review. Life Sci [Internet] [citado 11 de septiembre de 2023];330:122022, 1 de octubre de 2023. Disponible en: https://www.sciencedirect.com/science/article/pii/S0024320523006574
12. Chunduri A, Reddy SDM, Jahanavi M, Reddy CN. Gut-Brain Axis, Neurodegeneration and Mental Health: A Personalized Medicine Perspective. Indian J Microbiol 62(4):505-15, 2022.
13. Korenblik V, Brouwer ME, Korosi A, Denys D, Bockting CLH, Brul S, et al. Are neuromodulation interventions associated with changes in the gut microbiota? A systematic review. Neuropharmacology 223, 2023.
14. Everett BA, Tran P, Prindle A. Toward manipulating serotonin signaling via the microbiota-gut-brain axis. Curr Opin Biotechnol 78, 2022.
15. Carloni S, Rescigno M. The gut-brain vascular axis in neuroinflammation. Semin Immunol 69, 2023.
16. Tiwari P, Dwivedi R, Bansal M, Tripathi M, Dada R. Role of Gut Microbiota in Neurological Disorders and Its Therapeutic Significance. J Clin Med 12(4), 2023.
17. Swer NM, Venkidesh BS, Murali TS, Mumbrekar KD. Gut microbiota-derived metabolites and their importance in neurological disorders. Mol Biol Rep;50(2):1663-75, 2023.
18. Liu L, Wang H, Chen X, Xie P. Gut microbiota: A new insight into neurological diseases. Chin Med J (Engl) 136(11):1261-77, 2023.
19. Khatoon S, Kalam N, Rashid S, Bano G. Effects of gut microbiota on neurodegenerative diseases. Front Aging Neurosci 15, 2023.
20. Kim NY, Lee HY, Choi YY, Mo SJ, Jeon S, Ha JH, et al. Effect of gut microbiota-derived metabolites and extracellular vesicles on neurodegenerative disease in a gut-brain axis chip. Nano Converg [Internet] [citado 22 de mayo de 2024];11(1):7, 1 de octubre de 2023. Disponible en: https://nanoconvergencejournal.springeropen.com/articles/10.1186/s40580-024-00413-w
21. Zhang LN, Yuan WL, Ye M, Yin L, Wang SJ. Changes in the intestinal microbiota of patients with Parkinson's disease and their clinical significance. Int J Clin Pharmacol Ther 61(2):48-58, 2023.
22. Li Z, Liang H, Hu Y, Lu L, Zheng C, Fan Y, et al. Gut bacterial profiles in Parkinson's disease: A systematic review. CNS Neurosci Ther 29(1):140-57, 2023.
23. Proano AC, Viteri JA, Orozco EN, Calle MA, Costa SC, Reyes DV, et al. Gut Microbiota and Its Repercussion in Parkinson's Disease: A Systematic Review in Occidental Patients. Neurol Int 15(2):750-63, 2023.
24. Grant H, Anderton R, Gasson N, Lawrence BJ. The gut microbiome and cognition in Parkinson's disease: a systematic review. Nutr Neurosci 26(10):932-41, 2023.
25. Klann EM, Dissanayake U, Gurrala A, Farrer M, Shukla AW, Ramirez-Zamora A, et al. The Gut-Brain Axis and Its Relation to Parkinson's Disease: A Review. Front Aging Neurosci 13, 2022.
26. Zhou S, Li B, Deng Y, Yi J, Mao G, Wang R, et al. Meta-analysis of the relations between gut microbiota and pathogens and Parkinson's disease. Adv Clin Exp Med 32(6), 2023.
27. Chen SJ, Lin CH. Gut microenvironmental changes as a potential trigger in Parkinson's disease through the gut-brain axis. J Biomed Sci 29(1), 2022.
28. Salim S, Ahmad F, Banu A, Mohammad F. Gut microbiome and Parkinson's disease: Perspective on pathogenesis and treatment. J Adv Res [Internet] [citado 11 de septiembre de 2023];50:83-105, 1 de agosto de 2023. Disponible en: https://www.sciencedirect.com/science/article/pii/S2090123222002429
29. Jo S, Kang W, Hwang YS, Lee SH, Park KW, Kim MS, et al. Oral and gut dysbiosis leads to functional alterations in Parkinson's disease. Npj Park Dis 8(1), 2022.
30. Turco L, Opallo N, Buommino E, De Caro C, Pirozzi C, Mattace Raso G, et al. Zooming into Gut Dysbiosis in Parkinson's Disease: New Insights from Functional Mapping. Int J Mol Sci 24(11) 2023.
31. Bi M, Feng L, He J, Liu C, Wang Y, Jiang H, et al. Emerging insights between gut microbiome dysbiosis and Parkinson's disease: Pathogenic and clinical relevance. Ageing Res Rev 82, 2022.
32. Nishiwaki H, Ito M, Hamaguchi T, Maeda T, Kashihara K, Tsuboi Y, et al. Short chain fatty acids-producing and mucin-degrading intestinal bacteria predict the progression of early Parkinson's disease. Npj Park Dis 8(1), 2022.
33. Zhang P, Huang P, Du J, He Y, Liu J, He G, et al. Specific gut microbiota alterations in essential tremor and its difference from Parkinson's disease. Npj Park Dis [Internet] [citado 18 de marzo de 2023]; 8(1):1-8, 5 de agosto de 2022. Disponible en: https://www.nature.com/articles/s41531-022-00359-y
34. Papi? E, Ra?ki V, Hero M, Tomi? Z, Star?evi?-?ižmarevi? N, Kovanda A, et al. The effects of microbiota abundance on symptom severity in Parkinson's disease: A systematic review. Front Aging Neurosci 14, 2022.
35. Zuo S, Wang H, Zhao Q, Tang J, Wang M, Zhang Y, et al. High levels of Bifidobacteriaceae are associated with the pathogenesis of Parkinson's disease. Front Integr Neurosci 16, 2023.
36. Claudino dos Santos JC, Lima MPP, Brito GADC, Viana GSDB. Role of enteric glia and microbiota-gut-brain axis in parkinson disease pathogenesis. Ageing Res Rev 84, 2023.
37. Kim S, Kwon SH, Kam TI, Panicker N, Karuppagounder SS, Lee S, et al. Transneuronal Propagation of Pathologic ?-Synuclein from the Gut to the Brain Models Parkinson's Disease. Neuron 103(4):627-641.e7, 2019.
38. Shi J, Wang Y, Chen D, Xu X, Li W, Li K, et al. The alteration of intestinal mucosal ?-synuclein expression and mucosal microbiota in Parkinson's disease. Appl Microbiol Biotechnol 107(5-6):1917-29, marzo de 2023.
39. Ortega Moreno L, Bagues A, Martínez V, Abalo R. New Pieces for an Old Puzzle: Approaching Parkinson's Disease from Translatable Animal Models, Gut Microbiota Modulation, and Lipidomics. Nutrients 15(12), 2023.
40. Huang P, Zhang P, Du J, Gao C, Liu J, Tan Y, et al. Association of fecal short-chain fatty acids with clinical severity and gut microbiota in essential tremor and its difference from Parkinson's disease. Npj Park Dis 9(1), 2023.
41. Zhang Y, He X, Qian Y, Xu S, Mo C, Yan Z, et al. Plasma branched-chain and aromatic amino acids correlate with the gut microbiota and severity of Parkinson's disease. Npj Park Dis [Internet] [citado 18 de marzo de 2023];8(1):1-10, 21 de abril de 2022. Disponible en: https://www.nature.com/articles/s41531-022-00312-z
42. Badaeva AV, Danilov AB, Clayton P, Moskalev AA, Karasev AV, Tarasevich AF, et al. Perspectives on Neuronutrition in Prevention and Treatment of Neurological Disorders. Nutrients 15(11), 2023.
43. Bianchi VE, Rizzi L, Somaa F. The role of nutrition on Parkinson's disease: a systematic review. Nutr Neurosci 26(7):605-28, 2023.
44. Omotosho AO, Tajudeen YA, Oladipo HJ, Yusuff SI, AbdulKadir M, Muili AO, et al. Parkinson's disease: Are gut microbes involved? Brain Behav 13(8), 2023.
45. Ettinger S. Diet, Gut Microbiome, and Cognitive Decline. Curr Nutr Rep 11(4):643-52, 2022.
46. Cai Y, Liu P, Zhou X, Yuan J, Chen Q. Probiotics therapy show significant improvement in obesity and neurobehavioral disorders symptoms. Front Cell Infect Microbiol 13, 2023.
47. Sun B, Sawant H, Borthakur A, Bihl JC. Emerging therapeutic role of gut microbial extracellular vesicles in neurological disorders. Front Neurosci 17, 2023.
48. Sancandi M, De Caro C, Cypaite N, Marascio N, Avagliano C, De Marco C, et al. Effects of a probiotic suspension SymproveTM on a rat early-stage Parkinson's disease model. Front Aging Neurosci 14, 2023.
49. Sun H, Zhao F, Liu Y, Ma T, Jin H, Quan K, et al. Probiotics synergized with conventional regimen in managing Parkinson's disease. Npj Park Dis 8(1), 2022.
50. Yang X, He X, Xu S, Zhang Y, Mo C, Lai Y, et al. Effect of Lacticaseibacillus paracasei strain Shirota supplementation on clinical responses and gut microbiome in Parkinson's disease. Food Funct 14(15):6828-39, 2023.
51. Un-Nisa A, Khan A, Zakria M, Siraj S, Ullah S, Tipu MK, et al. Updates on the Role of Probiotics against Different Health Issues: Focus on Lactobacillus. Int J Mol Sci 24(1), 2023.
52. Li T, Chu C, Yu L, Zhai Q, Wang S, Zhao J, et al. Neuroprotective Effects of Bifidobacterium breve CCFM1067 in MPTP-Induced Mouse Models of Parkinson's Disease. Nutrients [Internet] [citado 18 de marzo de 2023];14(21):4678, 4 de noviembre de 2022. Disponible en: https://www.mdpi.com/2072-6643/14/21/4678

 
 
 
 
 
 
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
ua31618