LA MELATONINA EVITA EL ESTRES OXIDATIVO INDUCIDO POR ACIDO OCADAICO Y PEROXIDO DE HIDROGENO EN CELULAS N1E-115





LA MELATONINA EVITA EL ESTRES OXIDATIVO INDUCIDO POR ACIDO OCADAICO Y PEROXIDO DE HIDROGENO EN CELULAS N1E-115

(especial para SIIC © Derechos reservados)
Estos datos sugieren la importancia del estrés oxidativo en el modelo del ácido ocadaico, así como su participación en los cambios bioquímicos originados en el curso y evolución de este modelo experimental, similar a la enfermedad de Alzheimer
montilla9.jpg Autor:
Montilla López, Pedro
Columnista Experto de SIIC

Institución:
Departamento de Bioquímica y Biología Molecular Facultad de Medicina Universidad de Córdoba Córdoba, España


Artículos publicados por Montilla López, Pedro
Coautores
Isaac Túnez Fiñana. Doctor en Medicina y Ciru*  María del Carmen Muñoz de Agueda. Diplomada U* 
*
Recepción del artículo
27 de Abril, 2004
Aprobación
10 de , 2004
Primera edición
1 de Diciembre, 2004
Segunda edición, ampliada y corregida
7 de Junio, 2021

Resumen
El presente trabajo, realizado en células de neuroblastoma N1E-115, evalúa el estrés oxidativo inducido por ácido ocadaico, peróxido de hidrógeno y ácido ocadaico más peróxido de hidrógeno, así como el efecto protector de la melatonina. Nuestro estudio muestra que la exposición de las células al ácido ocadaico (50 nM) y peróxido de hidrógeno (200 μM) durante dos horas induce un intenso estrés oxidativo caracterizado por descenso en el contenido de GSH y reducción en la actividad celular de glutatión transferasa y catalasa. Asimismo, estas condiciones experimentales desencadenan un incremento en los productos de lipoperoxidación. El grado de estrés oxidativo inducido por el ácido ocadaico casi se duplica en presencia de peróxido de hidrógeno. Los efectos inducidos por el ácido ocadaico, el peróxido de hidrógeno y el ácido ocadaico más peróxido de hidrógeno son evitados por la presencia de melatonina (10-5 M). Estos datos sugieren la importancia del estrés oxidativo en el modelo del ácido ocadaico, así como su participación en los cambios bioquímicos originados en el curso y evolución de este modelo experimental, similar a la enfermedad de Alzheimer. Estos resultados parecen indicar el efecto antioxidante y protector de la melatonina.

Palabras clave
Células N1E-115, enfermedad de Alzheimer, ácido ocadaico, estrés oxidativo, peróxido de hidrógeno, melatonina


Artículo completo

(castellano)
Extensión:  +/-5.47 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
The present study with N1E-115 neuroblastoma cells evaluated the oxidative stress induced by okadaic acid, hydrogen peroxide and okadacia acid plus hydrogen peroxide, as well as the protective effect of melatonin. We demonstrated that exposure of cells to 50 nM acid and hydrogen peroxide (200 μM) for 2 h induced an intense oxidative stress characterized by a decrease of the GSH content and a reduction in cellular glutathione transferase and catalase activity. Likewise, these experimental conditions prompted an increase in lipid peroxidation products. The degree of oxidative stress induced by okadaic acid was almost duplicated in the presence of hydrogen peroxide. The effects induced by okadaic acid, hydrogen peroxide and okadaic acid plus hydrogen peroxide are prevented by melatonin (10-5 M). These data indicate the great importance of oxidative stress in the okadaic acid model, as well as its participation in the biochemical changes originated in the course and development of this experimental model, similar to Alzheimer's disease. These results seem to indicate the antioxidative and protective effect of melatonin.

Key words
N1E-115 cells, Alzheimer's disease, okadaic acid, oxidative stress, hydrogen peroxide, melatonin


Clasificación en siicsalud
Artículos originales > Expertos de Iberoamérica >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Bioquímica
Relacionadas: Farmacología, Medicina Interna



Comprar este artículo
Extensión: 5.47 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Enviar correspondencia a:
Montilla López, Pedro
Bibliografía del artículo
  1. Barnham KJ, Masters CL, Bush AI. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov. 2004; 3(3):205-214.
  2. Emerit J, Edeas M, Bricaire F. Neurodegenerative disease and oxidative stress. Biomed. Pharmacother. 2004; 58(1):39-46.
  3. Bossy-Wetzel E, Barsoum MJ, Godzik A y col. Mitochondrial fission in apoptosis, neurodegeneration and aging. Curr. Opin. Cell. Biol. 2003; 15(6):706-716.
  4. Rego AC, Oliveira CR. Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases. Neurochem. Res. 2003; 28(10):1563-1574.
  5. Uchida K. 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog. Lipid Res. 2003; 42(4):318-343.
  6. Liu Q, Raina AK, Smith MA y col. Hydroxynonenal, toxic carbonyls, and Alzheimer disease. Mol. Aspects Med. 2003; 24(4-5):305-513.
  7. Eckert A, Keil U, Marques CA y col. Mitochondrial dysfunction, apoptotic cell death, and Alzheimer's disease. Biochem. Pharmacol. 2003; 66(8):1627-1634.
  8. Perry G, Taddeo MA, Nunomura A y col. Comparative biology and pathology of oxidative stress in Alzheimer and other neurodegenerative diseases: beyond damage and response. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2002; 133(4):507-513.
  9. Velez-Pardo C, Ospina GG, Jimenez del Rio M. Aβ[25-35] peptide and iron promote apoptosis in lymphocytes by an oxidative stress mechanism: involvement of H2O2, caspase-3, NF-κB, p53 and c-Jun. Neurotoxicology 2002; 23(3):351-365.
  10. Zhu X, Rottkamp CA, Coux H y col. Activation of p38 kinase links tau phosphorylation, oxidative stress, and cell cycle-related enventes in Alzheimer disease. Neuropathol. Exp. Neruol. 2000; 59(10):880-888.
  11. Harkany T, Hortobágyi T, Sasvári M y col. Neuroprotective approaches in experimental models of β-amyloid neurotoxicity: relevance to Alzheimer's disease. Prog. Neuropsychopharmacol. Biol. Psychiatry. 1999; 23(6):963-1008.
  12. Arias C, Sharma N, Davies P y col. Okadaic acid induces early changes in microtubule-associated protein 2 and tau phosphorylation prior to neurodegeneration in cultured cortical neurons. J. Neurochem. 1993; 61(2):673-682.
  13. Dupont-Wallois L, Sautiere PE, Cocquerelle C y col. Shift from fetal-type to Alzheimer-type phosphorylated tau proteins in SKNSH-SY 5Y cells treated with okadaic acid. FEBS Lett. 1995; 357(2):197-201.
  14. Takai A, Bialojan C, Troxchka M y col. Smooth muscle myosin phosphatase inhibition and force enhancement by black sponge toxin. FEBS Lett. 1987; 217(1):81-84.
  15. Bialojan C y Takai A. Inhibitory effect of a marine-sponge toxin, okadaic acid on protein phosphatases: specificity and kinetics. Biochem. J. 1988; 256(1):283-290.
  16. Dickey RW, Bobzin SC, Faulkner DJ y col. Identification of okadaic acid from a Caribbean dinoflagellate, Prorocentrum concavum. Toxicon. 1990; 28(4):371-377.
  17. Arendt T, Holzer M, Brucker MK y col. The use of okadaic acid in vivo and the induction of molecular changes typical for Alzheimer's disease. Neuroscience. 1998; 85(4):1337-1340.
  18. Boe R, Giertsen BT, Vintermyr OK y col. The protein phosphatase inhibitor okadaic acid induces morphological changes typical of apoptosis in mammalian cells. Exp. Cell Res. 1991; 195(1):237-246.
  19. Chiou JY y Westhead EW. Okadaic acid, a protein phosphatase inhibitor, inhibits nerve growth factor-directed neurite outgrowth in PC12 cells. J. Neurochem. 1992; 59(5):1963-1966.
  20. Fujita M, Goto K, Yoshida K y col. Okadaic acid stimulates expression of Fas receptor and Fas ligand by activation of nuclear factor κB in human oral squamous carcinoma cells. Oral Oncol. 2004; 40(2):199-206.
  21. Traore A, Ruiz S, Baudrimont I y col. Combined effects of okadaic acid and cadmium on lipid peroxidation and DNA bases modifications (m5dC and 8-(OH)-dG) in Caco-2 cells. Arch. Toxicol. 2000; 74(2):79-84.
  22. Traoré A, Bonini M, Dano SD y col. Synergistic effects of some metals contaminating mussels on hte cytotoxicity of the marine toxin okadaic acid. Arch. Toxicol. 1999; 73(6):289-295.
  23. Schonthal AH. Role of PP2A in intracellular signal transduction pathways. Front. Biosci. 1998; 3:D1262-D1273.
  24. Nago M, Shima H, Nakayasu M y col. Protein serine/threonine phosphatases as binding proteins for okadaic acid. Mutat. Res. 1995; 333(1-2):173-179.
  25. Iqbal K, Alonso AC, Gong CX y col. Mechanisms of neurofibrillary degeneration and the formation of neurofibrillary tangles. J. Neural. Transm. Suppl. 1998; 53:169-180.
  26. Boe R, Giertsen BT, Vintermyr OK y col. The protein phosphatase inhibitor okadaic acid induces morphological changes typical of apoptosis in mammalian cells. Exp. Cell Res. 1991; 195(1):237-246.
  27. Chiou JY y Westhead EW. Okadaic acid, a protein phosphatase inhibitor, inhibits nerve growth factor-directed neurite outgrowth in PC12 cells. J. Neurochem. 1992; 59(5):1963-1966.
  28. Okada D. Differential effects of protein kinase C on neuronal nitric oxide synthase activity in rat cerebellar slices and in vitro. J. Chem. Neuroanat. 1996; 10 (3-4):213-220.
  29. Garver TD, Lehman RA y Billingsley ML. Microtubule assembly competence analysis of freshly-biopsied human tau, dephosphorylated tau, and Alzheimer tau. J. Neurosci. Res. 1996; 44(1):12-20.
  30. Nelson PT y Saper CB. Injections of okadaic acid, but not beta-amyloid peptide, induce Alz-50 immunoreactive dystrophic neurites in the cerebral cortex of sheep. Neurosci. Lett. 1996; 208(2):77-80.
  31. Arias C, Becerra-García F, Arrieta I y col. The protein phosphatase inhibitor okadaic acid induces heat shock protein expression and neurodegeneration in rat hippocampus in vivo. Exp. Neurol. 1998; 153(2):242-254.
  32. Runden E, Seglen PO, Haug FM y col. Regional selective neuronal degeneration after protein phosphatase inhibition in hippocampal slice cultures: evidence for a MAP kinase-dependent mechanism. J. Neurosci. 1998;18(18):7296-7305.
  33. Shinohara S y Kawasaki K. Electrophysiological changes in rat hippocampal pyramidal neurons produced by cholecystokinin octapeptide. Neuroscience. 1997; 78(4):1005-1016.
  34. Tapia R, Pena F y Arias C. Neurotoxic and synaptic effects of okadaic acid, an inhibitor of protein phosphatases. Neurochem. Res. 1999; 24(11):1423-1430.
  35. Lee J, Hong H, Im J y col. The formation of PHF-1 and SMI-31 positive dystrophic neuritis in rat hippocampus following acute injection of okadaic acid. Neurosci. Lett. 2000; 282(1-2):49-42.
  36. Chen KD, Lai MT, Cho JH y col. Activation on p38 mitogen-activited protein kinase and mitochondrial Ca(2+)-mediated oxidative stress are essential for the enhanced expression of grp78 induced by the protein phosphatase inhibitors okadaic acid and calyculin A. J. Cell Biochem. 2000; 76(4):585-595.
  37. Chang WM, Chen KD, Chen LY y col. Mitochondrial calcium-mediated reactive oxygen species are essential for the rapid induction of the grp78 gene in 9L rat brain tumour cells. Cell Signal. 2003; 15(1):57-64.
  38. Pérez M, Hernández F, Gómez-Ramos A y col. Formation of aberrant phosphotau fibrillar polymers in neural cultured cells. Eur. J. Biochem. 2002; 269(5):1484-1489.
  39. Pérez M, Cuadros R, Smith MA y col. Phosphorylated, but not native, tau protein assembles following reaction with the lipid peroxidation product, 4-hydroxy-2-nonenal. FEBS Lett. 2000; 486(3):270-274.
  40. Medina M, García-Rocha M, Padilla R y col. Protein kinases involved in the phosphorylation of human tau protein in transfected COS-1 cells. Biochim. Biophys Acta. 1996; 1316(1):43-50.
  41. Mattson MP, Fu W, Waeg G y col. 4-Hydroxynonenal, a product of lipid peroxidation, inhibits dephosphorylation of the microtubule-associated protein tau. Neuroreport. 1997; 8(9-10):2275-2281.
  42. He J, Yamada K, Zou IB y col. Spatial memory deficit and neurodegeneration induced by the direct injection of okadaic acid into the hippocampus in rats. J. Neural Transm. 2001; 108(12):1435-1443.
  43. Montilla-López P, Muñoz-Agueda MC, Feijóo-López M y col. Comparison of melatonin versus vitamin C on oxidative stress and antioxidant enzyme activity in Alzheimer's disease induced by okadaic acid in neuroblastoma cells. Eur. J. Pharmacol. 2002; 451(3):237-243.
  44. Túnez I, Muñoz MC, Feijóo M y col. Protective melatonin effect on oxidative stress induced by okadaic acid into rat brain. J. Pineal Res. 2003; 34(4):265-268.
  45. Jones WK, Brown M, Ren X y col. NF-κB as an integrator of diverse signaling pathways: the heart of myocardial signaling Cardiovasc. Toxicol. 2003; 3(3):229-254.
  46. Ullrich V, Namgaladze D, Frein D. Superoxide as inhibitor of calcineurin and mediator of redox regulation. Toxicol. Lett. 2003;139(2-3):107-110.
  47. Calabrese V, Scapagnini G, Colombrita C y col. Redox regulation of heat shock protein expression in aging and neurodegenerative disorders associated with oxidative stress: A nutritional approach. Amino Acids. 2003; 25 (3-4):437-444.
  48. Goldbraum O, Richter-Landsberg Ch. Activation of PPA2-like phosphatase and modulation of tau phosphorylation accompany stress-induced apoptosis in cultured oligodendrocytes. Glia 2002; 40(3):271-282.
  49. Rusnak F, Reiter T. Sensing electrons: protein phosphatase redox regulation. Trends Biochem. Sci. 2000; 25(11):527-529.
  50. Krejsa CM, Schieven GL. Impact of oxidative stress on signal transduction control by phosphotyrosine phosphatases. Environ. Health Perspect. 1998; 106(Suppl 5):1179-1184.
  51. Jaskot RH, Charlet EG, Grose EC y col. An automated analysis of glutathione peroxidase, S-transferase, and reductase activity in animal tissue. J. Anal. Toxicol. 1983; 7(2):86-88.
  52. Aebi H. Catalase in vitro. Methods Enzymol. 1984; 105:121-126.
  53. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Ann. Biochem. 1976; 72:248-254.
  54. Benítez-King G, Túnez I, Bellón A y col. Melatonin prevents cytoskeletal alterations and oxidtive stress induced by okadaic acid in N1E-115 cells. Exp. Neurol. 2003; 182(1):152-259.
  55. Goldman EH, Chen L, Fue H. Activation of apoptosis signal-regulating kinase 1 by reactive oxygen species through dephosphorylation at Ser967 and 14-3-3 dissociation. J. Biol. Chem. 2004; 279(11):10442-10449.
  56. Rodríguez C, Mayo JC, Sainz RM y col Regulation of antioxidant enzymes: a significant role for melatonin. J. Pienal Res. 2004; 36(1):1-9.
  57. Rao RK, Clayton LW. Regulation of protein phosphatase 2A by hydrogen peroxide and glutathionylation. Biochem. Biophys. Res Commun. 2002; 293(1):610-616.

 
 
 
 
 
 
Clasificado en
Artículos originales>
Expertos del Mundo

Especialidad principal:
Bioquímica


Relacionadas:
Farmacología
Medicina Interna
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
ua31618