EL PAPEL TROMBOGENICO DE UN SISTEMA FIBRINOLITICO ANORMAL





EL PAPEL TROMBOGENICO DE UN SISTEMA FIBRINOLITICO ANORMAL

(especial para SIIC © Derechos reservados)
El sistema fibrinolítico se encuentra expuesto a numerosos factores que pueden alterar el equilibrio que mantienen la plasmina, sus precursores, los activadores e inhibidores del sistema. Se plantean los conocimientos actuales y el objetivo de las investigaciones en el futuro.
kwaan9.jpg Autor:
Hau C. Kwaan
Columnista Experto de SIIC

Institución:
Division of Hematology/Oncology School of Medicine Northwestern University of Feinberg IL, USA


Artículos publicados por Hau C. Kwaan
Coautores
Lisa N. Boggio, MD.*  Chadi Nabhan, MD* 
Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL*
Recepción del artículo
6 de Julio, 2004
Primera edición
7 de Junio, 2005
Segunda edición, ampliada y corregida
7 de Junio, 2021

Resumen
Cuando hay un desequilibrio en el sistema fibrinolítico, ya sea adquirido o hereditario, se encuentra aumentado el riesgo de sangrado o de trombosis. Este artículo describe las características de la fibrinólisis anormal que llevan a la trombosis. Los trastornos hereditarios son infrecuentes y pueden afectar la síntesis de plasminógeno, sus activadores y sus inhibidores. Estas anormalidades en la síntesis de plasminógeno y el polimorfismo en el inhibidor de los activadores del plasminógeno tipo 1 (IAP-1) pueden desembocar en eventos tromboembólicos. Los trastornos adquiridos se encuentran en una variedad de enfermedades, principalmente diabetes, cáncer y enfermedades inflamatorias. Los medicamentos también pueden elevar el riesgo de trombosis a través de un aumento en la producción de los inhibidores del plasminógeno o una disminución en la producción de la proteína S. Factores trombofílicos adicionales como deficiencias de la proteína C, de la proteína S y de antitrombina; mutaciones del factor V y la protrombina, y la producción excesiva de factores de la coagulación como los factores VII y II, deben considerarse parte del desarrollo de las condiciones tromboembólicas. El manejo continúa siendo problemático al no haber terapias a largo plazo que restituyan el equilibrio del sistema fibrinolítico.

Palabras clave
Plasminógeno, fibrinólisis, trombosis, cáncer, estados de hipercoagulabilidad


Artículo completo

(castellano)
Extensión:  +/-12.26 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
When there is an imbalance of the fibrinolytic system, either acquired or hereditary, the risk of bleeding or thrombosis increases. This article describes the characteristics of abnormal fibrinolysis that leads to thrombosis. Hereditary disorders are uncommon and can affect the synthesis of plasminogen, its activators, and its inhibitors. These abnormalities of plasminogen synthesis and polymorphisms in plasminogen activator inhibitor 1 (PAI-1) can lead to thromboembolic events. Acquired disorders are found in a variety of diseases, especially in diabetes, cancer, and inflammatory states. Medications can also increase the risk of thrombosis through increased production of plasminogen inhibitors or decreased production of protein S. Additional thrombophilic factors such as deficiencies of protein C, protein S, and antithrombin; mutations of factor V and prothrombin; and excessive production of clotting factors such as factor VIII and II must be considered in the development of thromboembolic conditions. Management continues to be problematic with no long-acting therapy to counteract an imbalance of the fibrinolytic system.

Key words
Plasminogen, fibrinolysis, thrombosis, cancer, hypercoagulable states


Full text
(english)
para suscriptores/ assinantes

Clasificación en siicsalud
Artículos originales > Expertos del Mundo >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Hematología
Relacionadas: Bioquímica, Diagnóstico por Laboratorio, Medicina Interna



Comprar este artículo
Extensión: 12.26 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Enviar correspondencia a:
Kwaan, Hau C
Bibliografía del artículo
  1. Mole R. Fibrinolysin and the fluidity of blood post mortem. J Path & Bact 1948;60:413-427.
  2. Kwaan H, McFadzean A, Cook J. Plasma fibrinolytic activity in cirrhosis of the liver. Lancet 1952; i:132-156.
  3. Kwaan H, McFadzean A. The inhibition of clot lysis by corticotrophin. Lancet 1956;i:136-137.
  4. Kwaan H, Lo R, McFadzean A, et al. On plasma fibrinolytic activity in cryptogenic splenomegaly. Clin Sci 1959;18:251-261.
  5. Kwaan H, Lo R, McFadzean A. Antifibrinolytic activity in primary carcinoma of the liver. Clin Sci 1959;18:251-261.
  6. Bachmann F. Plasminogen-plasmin enzyme system. In: Coleman R, Hirsh J, Marder V, et al., editors. Hemostasis and Thrombosis, Basic Principles and Clinical Practice. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 275-320.
  7. Kwaan H. The plasminogen-plasmin system in malignancy. Cancer Met Rev 1992;11:291-311.
  8. Kwaan H. The biologic role of components of the plasminogen-plasmin system. Prog Cardiovascular Dis 1992;34:309-316.
  9. Hendriks D, Scharpe S, Sande Mv, et al. Characterization of carboxypeptidase in human serum distinct from carboxypeptidase N. J Clin Chem Clin Biochem 1989;27:277-285.
  10. Juhan-Vague I, JF JR, Grimaux M, et al. Thrombin-activatable fibrinolysis inhibitor antigen levels in cardiovascular risk factors. Arterioscler Thromb Vasc Biol 2000;20:2156-2161.
  11. Nagashima M, Yin Z, Zhao L, et al. Thrombin-activatable fibrinolysis inhibitor (TAFI) deficient mice. J Clin Invest 2002;109:101-10.
  12. Nagashima M, Yin Z, Zhao L, et al. Thrombin-activatable fibrinolysis inhibitor (TAFI) deficiency is compatible with murine life. J Clin Invest 2002;109:101-110.
  13. Raum D, Marcus D, Alper C, et al. Synthesis of human plasminogen by the liver. Science 1980;208:1036-1037.
  14. Collen D, DeMaeyer L. Molecular biology of human plasminogen: Physicochemical properties and microheterogeneity. Thromb Diath Haemorrh 1975;34:396-402.
  15. Ji W-R, Castellino F, Y YC, et al. Charactization of kringle domains of angiostatin as antagonists of endothelial cell migration, an important process in angiogenesis. FASEB J 1998;12:1731-1738.
  16. Mingers A, Heimburger N, Zeitler P, et al. Homozygous type 1 plasminogen deficiency. Semin Thromb Hemost 1997;23:259-269.
  17. Shigekiyo T, Uno Y, Tomonari A, et al. Type 1 congenital plasminogen deficiency is not a risk factor for thrombosis. Thromb Haemost 1992; 67:189-192.
  18. Tait R, Walker I, Conkie J, et al. Isolated familial plasminogen deficiency may not be a risk factor for thrombosis. Thromb Haemost 1996;76:1004-1008.
  19. Stolz E, Kemkes-Matthes B, Potzsch B, et al. Screening for thrombophilic risk factors among 25 German patients with cerebral venous thrombosis. Acta Neurologica Scandinavica 2000;102:31-6.
  20. Iacoviello L, Burzotta F, DiCastelnuovo A, et al. The 4G/5G polymorphism of PAI-1 promotor gene and the risk of myocardial infarction: a meta-analysis. Thromb Haemost 1998;80:1029-1030.
  21. Mayata T, Iwananga S, Sakata Y, et al. Plasminogen Tochigi: Inactive plasmin resulting from replacement of alanine-600 by threonine in the active site. Proc Natl Acad Sci 1982;79:6132-6136.
  22. Tsutsumi S, Saito T, Sakata T, et al. Genetic diagnosis of dysplasminogenia: Detection of an Ala601-Thr mutation in 118 out of 125 families and identification of a new Asp676-Asn mutation. Thromb Haemost 1996;76:135-138.
  23. Mima N, Azuma H, Shigekiyo T, et al. A novel missense in two families with congenital plasminogen deficiency-identification of an Ala (675) to Thr (675) substitution. Thromb Haemost 1996;75:96-100.
  24. Kohler H, Grant P. Plasminogen activator type 1 and coronary artery disease. N Eng J Med 2000;342:1792-1801.
  25. Dawson S, Hamsten A, Wilman B, et al. Genetic variation at the plasminogen activator inhibitor-1 locus is associated with altered levels of plasma plasminogen activator inhibitor-1 activity. Arterioscl Thromb 1991;11:183-190.
  26. Eriksson P, Kallin B, Hooft FVt, et al. Allele-specific increase in basal transcription of the plasminogen-activator gene is associated with myocardial infarction. Proc Natl Acad Sci 1995;92:1851-1855.
  27. Ye S, Green F, Scarabin P, et al. The 4G/5G genetic polymorphism in the promotor of the plasminogen activator inhibitor-1 (PAI-1) gene is associated with differences in plasma PAI-1 activity but not with the risk of myocardial infarction in the ECTIM study. Thromb Haemost 1995;74:837-841.
  28. Ridker P, Hennekens C, Lindpainter K, et al. Arterial and venous thrombosis is not associated with the 4G/5G polymorphism in the promoter of the plasminogen activator inhibitor gene in a large cohort of U.S. men. Circulation 1997;95:59-62.
  29. Zoller B, Frutos PGd, Dahlback B. A common 4G allele in the promotor of the plasminogen activator inhibitor-1 (PAI-1) gene is a risk factor for pulmonary embolism and arterial thrombosis in hereditary protein S deficiency. Thromb Haemost 1998;79:802-807.
  30. Ichinose A, Espiling E, Takamatsu J, et al. Two types of abnormal genes for plasminogen in families with a predisposition for thrombosis. Proc Natl Acad Sci 1991;88:115-119.
  31. Folsom A, Cushman M, Heckbert S, et al. Prospective study of fibrinolytic markers and venous thromboembolism. J Clin Epi 2003;56:598-603.
  32. Morrish N, Stevens L, Head J, et al. A prospective study of mortality among middle-aged diabetic patients (the London cohort of the WHO multinational study of vascular disease in diabetics). I. Causes and death rates. Diabetologia 1990;33:538-541.
  33. Stamler J, Vaccaro O, Neaton J. Diabetes, other risk factors and 12-year cardiovascular mortality of men screened in the multiple risk factor intervention trial. Diabetes Care 1993;16:434-444.
  34. Anonymous. Consensus Statement. Role of cardiovascular risk factors in the prevention and treatment of macrovascular disease in diabetes. Diabetes Care 1989;12:573-579.
  35. Vaughan D. Plasminogen activator inhibitor-1: a common denominator in cardiovascular disease. J Invest Med 1998;46:370-376.
  36. Kwaan H, Wang J, Svoboda K, et al. Plasminogen activator 1 may promote tumor growth through the inhibition of apoptosis. Br J Cancer Met Rev 2000;82:1702-1708.
  37. Collen D. The plasminogen (fibrinolytic) system. Thromb. Haemost 1999;82:259-270.
  38. Alessi M, Juhan-Vague I, Koiostra T, et al. Insulin stimulates the synthesis of plasminogen activator inhibitor 1 by the human hepatocellular cell line HepG2. Thromb Haemost 1988;60:491-494.
  39. Juhan-Vague I, Alessi M, Vague P. Increases plasma plasminogen activator inhibitor l levels. A possible link between insulin resistance and atherothrombosis. Diabetologia 1991;34:457-462.
  40. Li X, Grenett H, Benza R, et al. Genotype-specific transcriptional regulation of PAI-1 expression by hypertriglyceridemic VLDL and Lp (a) in cultured human endothelial cells. Aterioscl Thromb Vasc Biol 1997;17:3215-3223.
  41. Nort T, Schneider D, Sobel B. Augmentation of the synthesis of plasminogen activator inhibitor type-1 by precursors of insulin. A potential risk factor for cardiovascular disease. Circulation 1994;89:321-330.
  42. Sironi L, Mussoni L, Prati L, et al. Plasminogen activator inhibitor type-1 synthesis and mRNA expression in HepG2 cells are regulated by VLDL. Arterioscl Thromb Vas Biol 1996;16:89-96.
  43. Chen Y, Su M, Walia R, et al. Sp1 sites mediate activation of the plasminogen-activator inhibitor-1 promotor by glucose in smooth muscle cells. J Biol Chem 1998;273:8225-8231.
  44. Calles-Escandon L, Mirza S, Sobel B, et al. Induction of hyperinsulinemia combined with hyperglycemia and hypertrygliceridemia increase plasminogen activator inhibitor 1 in blood of normal human subjects. Diabetes Care 1998;47:292-293.
  45. Festa A, D'Augistino R, Mykkanen L, et al. Relative contribution of insulin and its precursors to fibrinogen and PAI-1 in a large population with different states of glucose tolerance: the Insulin Resistance Atherosclerosis Study (IRAS). Arterioscl Thromb Vas Biol 1999;19:562-568.
  46. Sobel B, Woodcock-Mitchell J, Schneider D, et al. Increase plasminogen activator type 1 in coronary artery atherectomy specimens from type 2 diabetic compared with non diabetic patients: a potential factor predisposing to thrombosis and its persistence. Circulation 1998;97:2213-2221.
  47. Aronson D, Weinrauch L, D'Elia J, et al. Circadian patterns of heart rate viability, fibrinolytic activity, and hemostatic factors in type-1 diabetes mellitus with autonomic neuropathy. Am J Cardiol 1999;84:449-455.
  48. Muller J, Ludmer P, Willich S, et al. Circadian variation in the frequency of sudden cardiac death. Circulation 1987;75:131-138.
  49. Tsementzis S, Gill J, Hitchcock E, et al. Diurnal variation of, and activity during, the onset of stroke. Neurosurgery 1985;17:901-907.
  50. Muller J, Stone P, Turi Z, et al. Circadian variation in the frequency of onset of acute myocardial infarction. N Engl J Med. 1985;313:1315-1322.
  51. Fava S, Azzopardi J, Muscat H, et al. Absence of circadian variation in the onset of acute myocardial infarction in diabetic subjects. Br Heart J 1995;74:370-372.
  52. Tanka T, Fujita M, Fudo T, et al. Modification of the circadian variation of symptom onset of acute myocardial infarction in diabetes mellitus. Coronary Artery Dis 1995;6:241-244.
  53. Gray R, Yudkin J, Patterson D. Enzymatic evidence of impaired reperfusion in diabetic patients after thrombolytic therapy for acute myocardial infarction: a role for plasminogen activator inhibitor Br Heart J 1993;70:530-536.
  54. Ouriel K, Shortell C, Azodo M, et al. Acute peripheral arterial occlusion: predictors of success in catheter-directed thrombolytic therapy. Radiology 1994;193:561-566.
  55. Zuanetti G, Latini R, Maggioni A, et al. Influence of diabetes on mortality in acute myocardial infarction: data from the GISSI-2 study. J Am Coll Cardiol 1993;22:1788-1794.
  56. Tan K, Janus E, Lam K. Effects of fluvastatin on prothrombotic and fibrinolytic factors in type 2 diabetes mellitus. In J Cardiol 1999;84:934-937.
  57. Kruszynska Y, Yu J, Olesfky J, et al. Effects of troglitazone on blood concentrations of plasminogen activator inhibitor 1 in patients with type 2 diabetes and in lean and obese normal patients. Diabetes Care 2000;49:633-639.
  58. Trousseau A. In: Clinique Medicale de Hotel Dieu de Paris. 2nd ed; 1865. p. 654-712.
  59. Brugarolas A, Mik I, Elias E, et al. Correlation of hyperfibrinogenemia with major thromboembolism in patients with cancer. Surg Gynecol Obstet 1981;136:75-77.
  60. Davis R, Theologides A, Kennedy B. Comparitive studies of blood coagulation and platelet aggregation in patients with cancer and non-malignant diseases. Ann Int Med 1969;71:67-80.
  61. DeJong E, Knot E, Piker D, et al. Increased plasminogen activator activity in malignancy. Thromb Haemost 1987;57:140-143.
  62. Miller S, Sanchez-Avalos J, Stefanski T. Coagulation disorders in cancer. I. Clinical and laboratory studies. Cancer Met Rev 1967;20:1452-1465.
  63. Paramo R, Fernandez F, Cuesta B, et al. Clotting activity and impairment of fibrinolysis in malignancy. Thromb Res 1989;54:699-707.
  64. Rennie J, Ogston D. Fibrinolytic activity in malignant disease. J Clin Path 1975;28:872-874.
  65. Slichter S, Harker L. Hemostasis in malignancy. Ann NY Acad Sci 1974;230:252-261.
  66. Ozyikan O, Baltali E, Ozdemir O, et al. Haemostatic changes: Plasma levels of alpha 2 antiplasmin-plasmin complex and thrombin-antithrombin complex in female breast cancer. Tumori 1998;84:364-367.
  67. Taguchi O, Gabazza E, Yoshida M, et al. High plasma level of plasmin-alpha 2-plasmin inhibitor complex is a predictor of poor prognosis with lung cancer. Clin Chim Acta 1996;244:69-81.
  68. Wang J, Weiss I, Svoboda K, et al. Thrombogenic role of cells undergoing apoptosis. Br J Haematol 2001;115:382-391.
  69. Kwaan HC, Wang J, Boggio LN. Abnormalities in hemostasis in acute promyelocytic leukemia. Hematol Oncol 2002;20(1):33-41.
  70. Kwaan HC. Hypercoagulability and cancer. In: Smama M, Seghatchian M, Hecker S, editors. Hypercoagulable states: Fundamental aspects, acquired disorders, and congenital thrombophilia. Boca Raton: CRC Press; 1996. p. 317-334.
  71. Rickles FR, Levine M, Edwards RL. Hemostatic alterations in cancer patients. Cancer Metastasis Rev 1992;11(3-4):237-48.
  72. Wilson EL, Francis GE. Differentiation-linked secretion of urokinase and tissue plasminogen activator by normal human hemopoietic cells. J Exp Med 1987;165(6):1609-23.
  73. Bennett B, Booth N, Croll A, et al. The bleeding disorder in acute promyelocytic leukemia: Fibrinolysis due to u-PA rather than defibrination. Br J Haematol 1989;71:511-517.
  74. Avvisati G, Ten Cate J, Sturk A, et al. Acquired alpha-2-antiplasmin deficiency in acute promyelocytic leukemia. Br J Haematol 1988;70:43-48.
  75. Brower N, Harpel P. Proteolytic cleavage and inactivation alpha-2-plasmin inhibitor and C1 inhibitor by human polymorphonuclear leukocyte elastase. J Biol Chem 1982;257:9849-9854.
  76. Falanga A, Iacoviello L, Evangelista V, et al. Loss of blast cell procoagulant activity and improvement of hemostatic variables in patients with acute promyelocytic leukemia administered all-trans-retinoic acid. Blood 1995;86(3):1072-81.
  77. Lyons RM, Keski-Oja J, Moses HL. Proteolytic activation of latent transforming growth factor-beta from fibroblast-conditioned medium. J Cell Biol 1988;106(5):1659-65.
  78. Priest JR, Ramsay NK, Bennett AJ, et al. The effect of L-asparaginase on antithrombin, plasminogen, and plasma coagulation during therapy for acute lymphoblastic leukemia. J Pediatr 1982;100(6):990-5.
  79. Sills RH, Nelson DA, Stockman JA, 3rd. L-Asparaginase-induced coagulopathy during therapy of acute lymphocytic leukemia. Med Pediatr Oncol 1978;4(4):311-3.
  80. Kucuk O, Kwaan HC, Gunnar W, et al. Thromboembolic complications associated with L-asparaginase therapy. Etiologic role of low antithrombin III and plasminogen levels and therapeutic correction by fresh frozen plasma. Cancer 1985;55(4):702-6.
  81. van Bodegraven AA. Haemostasis in inflammatory bowel diseases: clinical relevance. Scand J Gastroenterol Suppl 2003(239):51-62.
  82. Jackson LM, O'Gorman PJ, O'Connell J, et al. Thrombosis in inflammatory bowel disease: clinical setting, procoagulant profile and factor V Leiden. Qjm 1997;90(3):183-8.
  83. Van Bodegraven AA, Tuynman HA, Schoorl M, et al. Fibrinolytic split products, fibrinolysis, and factor XIII activity in inflammatory bowel disease. Scand J Gastroenterol 1995;30(6):580-5.
  84. Idell S. Coagulation, fibrinolysis, and fibrin deposition in acute lung injury. Crit Care Med 2003;31(4 Suppl):S213-20.
  85. Wild RA, Reis SE. Estrogens, progestins, selective estrogen receptor modulators, and the arterial tree. Am J Obstet Gynecol 2001;184(5):1031-9.
  86. Gilabert J, Estelles A, Cano A, et al. The effect of estrogen replacement therapy with or without progestogen on the fibrinolytic system and coagulation inhibitors in postmenopausal status. Am J Obstet Gynecol 1995;173(6):1849-54.
  87. Inman WH, Vessey MP. Investigation of deaths from pulmonary, coronary, and cerebral thrombosis and embolism in women of child-bearing age. Br Med J 1968;2(599):193-9.
  88. Fisher B, Costantino JP, Wickerham DL, et al. Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst 1998;90(18):1371-88.
  89. Vandenbroucke JP, Rosing J, Bloemenkamp KW, et al. Oral contraceptives and the risk of venous thrombosis. N Engl J Med 2001;344(20):1527-35.
  90. Levine MN, Gent M, Hirsh J, et al. The thrombogenic effect of anticancer drug therapy in women with stage II breast cancer. N Engl J Med 1988;318(7):404-7.
  91. Bonnar J. Coagulation effects of oral contraception. Am J Obstet Gynecol 1987;157(4 Pt 2):1042-8.
  92. Kluft C, Lansink M. Effect of oral contraceptives on haemostasis variables. Thromb Haemost 1997;78(1):315-26.
  93. Stubblefield PG. Cardiovascular effects of oral contraceptives: a review. Int J Fertil 1989;34 Suppl:40-9.
  94. Winkler UH. Blood coagulation and oral contraceptives. A critical review. Contraception 1998;57(3):203-9.
  95. Meijers JC, Middeldorp S, Tekelenburg W, et al. Increased fibrinolytic activity during use of oral contraceptives is counteracted by an enhanced factor XI-independent down regulation of fibrinolysis: a randomized cross-over study of two low-dose oral contraceptives. Thromb Haemost 2000;84(1):9-14.
  96. Bloemenkamp KW, Rosendaal FR, Helmerhorst FM, et al. Enhancement by factor V Leiden mutation of risk of deep-vein thrombosis associated with oral contraceptives containing a third-generation progestagen. Lancet 1995;346(8990):1593-6.
  97. Cesarman G, Rios N, Sanchez-Guerrero J, et al. Antibodies to annexin II-a fibrinolytic receptor - are highly prevalent in antiphospholipid syndrome (APS) and may be related to thrombosis. Arthritis Rheum 2001;44(Suppl):S74.

 
 
 
 
 
 
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
ua31618