LA ANGIOTENSINA II Y LA INFLAMACION: EL EFECTO DE LOS INHIBIDORES DE LA ECA Y DE LOS BLOQUEANTES DEL RECEPTOR DE ANGIOTENSINA II




Artículos relacionadosArtículos relacionadosArtículos relacionados
Artículos afines de siicsalud publicados en los últimos 4 meses
RECOMENDACIONES PARA EL USO DE SACUBITRILO/VALSARTÁN EN LA INSUFICIENCIA CARDÍACA
Archivos de Cardiología de México 93(Supl):1-12
Difundido en siicsalud: 11 abr 2024

LA ANGIOTENSINA II Y LA INFLAMACION: EL EFECTO DE LOS INHIBIDORES DE LA ECA Y DE LOS BLOQUEANTES DEL RECEPTOR DE ANGIOTENSINA II

(especial para SIIC © Derechos reservados)
Los bloqueantes de los receptores de angiotensina II podrían ser útiles para reducir la incidencia de eventos cardiovasculares y de la diabetes mellitus tipo 2 debido al rápido efecto antiinflamatorio y la supresión de las especies reactivas de oxígeno.
dandona9.jpg Autor:
Paresh Dandona
Columnista Experto de SIIC

Institución:
Diabetes-Endocrinology Center of WNY


Artículos publicados por Paresh Dandona
Coautores
Sandeep Dhindsa*  Rajesh Garg* 
MD, Kaleida Health, Buffalo, EE.UU.*
Recepción del artículo
14 de Septiembre, 2004
Aprobación
30 de Septiembre, 2004
Primera edición
28 de Octubre, 2005
Segunda edición, ampliada y corregida
7 de Junio, 2021

Resumen
Recientemente se demostró que la angiotensina II ejerce un efecto proinflamatorio en los leucocitos, células endoteliales y células del músculo liso vascular. Esta reseña analiza el efecto de la angiotensina II en la inflamación y el estrés oxidativo; así como la acción antiinflamatoria de los inhibidores de la enzima convertidora de angiotensina (ECA) y de los bloqueantes del receptor de angiotensina II (BRA). La angiotensina II por medio del receptor AT tipo 1 activa la transcripción y expresión genética mediada por el factor nuclear κB (FN-κB, un factor de transcripción de la inflamación) e incrementa las moléculas de adhesión y las quimiocinas, lo que predispone a un estado protrombótico y a la ruptura de placas ateromatosas. También la angiotensina II estimula la NADPH (fosfato de nicotinamida adenina dinucleótido reducido) oxidasa y aumenta la producción de especies reactivas de oxígeno (ERO). Esto disminuye la biodisponibilidad de óxido nítrico y provoca trastornos en la función endotelial. El valsartán suprime la producción de ERO (O2) en los leucocitos y la actividad ligadora intranuclear del FN-κB; aumenta la expresión del inhibidor de κB (IκB) mientras que disminuye los niveles plasmáticos de la proteína C-reactiva (PCR) en plasma. Esta acción podría contribuir al efecto beneficioso de los BRA sobre los eventos cardiovasculares observado en los resultados de los estudios clínicos.

Palabras clave
Inflamación, estrés oxidativo, angiotensina II, FNκB, ERO, valsartán


Artículo completo

(castellano)
Extensión:  +/-7.64 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
It has recently been shown that angiotensin II (Ang II) exerts a pro-inflammatory effect on leucocytes, endothelial cells and vascular smooth muscle cells. This review discusses the effect of Ang II on inflammation and oxidative stress and the anti-inflammatory effects of ACE inhibitors and Ang II receptor blockers (ARBs). Ang II, acting via at type1 receptor, activates nuclear factor κB (NF-κB, an inflammatory transcription factor) mediated transcription and gene expression and increases adhesion molecules and chemokines, thereby predisposing to a pro-thrombotic state as well as plaque rupture. Ang II also stimulates NADPH oxidase and enhances ROS production. This decreases nitric oxide bioavailability and causes endothelial dysfunction. Valsartan suppresses ROS (O2) generation by leucocytes and intranuclear NF-κB binding activity; it increases inhibitory κB (IκB) expression while decreasing plasma CRP concentrations. It is likely that this action of ARBs contributes to their beneficial effects on cardiovascular events in clinical outcome studies.

Key words
Inflammation, oxidative stress, angiotensin II, NF-κB, ROS, valsartan


Full text
(english)
para suscriptores/ assinantes

Clasificación en siicsalud
Artículos originales > Expertos del Mundo >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Cardiología
Relacionadas: Atención Primaria, Endocrinología y Metabolismo, Farmacología, Medicina Farmacéutica, Medicina Interna, Salud Pública



Comprar este artículo
Extensión: 7.64 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Enviar correspondencia a:
Dandona, Paresh
Bibliografía del artículo
  1. James IM, Dickenson EJ, Burgoyne W, Jeremy JY, Barradas MA, Mikhailidis DP, et al. Treatment of hypertension with captopril: preservation of regional blood flow and reduced platelet aggregation. J Hum Hypertens 1988; 2:21-5.
  2. Gill J, Fonseca V, Dandona P, Jeremy JY. Lisinopril and nifedipine administration inhibits the ex vivo uptake of [45Ca2+] by platelets from hypertensive diabetic patients. Br J Clin Pharmacol 1992; 33:161-5.
  3. López-Farre A, Sánchez de Miguel L, Monton M, Jiménez A, López-Bloya A, Gómez J, et al. Angiotensin II AT(1) receptor antagonists and platelet activation. Nephrol Dial Transplant 2001; 16 Suppl 1:45-9.
  4. Ruiz Ortega M, Lorenzo O, Ruperez M, Konig S, Wittig B, Egido J. Angiotensin II activates nuclear transcription factor kappaB through AT(1) and AT(2) in vascular smooth muscle cells: molecular mechanisms. Circ Res 2000; 86:1266-72.
  5. Pueyo ME, González W, Nicoletti A, Savoie F, Arnal JF, Michel JB. Angiotensin II stimulates endothelial vascular cell adhesion molecule-1 via nuclear factor-κB activation induced by intracellular oxidative stress. Arterioscler Thromb Vasc Biol 2000; 20:645-51.
  6. Zahradka P, Werner JP, Buhay S, Litchie B, Helwer G, Thomas S. NF-κB activation is essential for angiotensin II-dependent proliferation and migration of vascular smooth muscle cells. J Mol Cell Cardiol 2002; 34:1609-21.
  7. Kranzhofer R, Browatzki M, Schmidt J, Kubler W. Angiotensin II activates the proinflammatory transcription factor nuclear factor-κB in human monocytes. Biochem Biophys Res Commun 1999; 257:826-8.
  8. Kranzhofer R, Schmidt J, Pfeiffer CA, Hagl S, Libby P, Kubler W. Angiotensin induces inflammatory activation of human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 1999; 19:1623-9.
  9. Dzau VJ. Theodore Cooper Lecture: Tissue angiotensin and pathobiology of vascular disease: a unifying hypothesis. Hypertension 2001; 37:1047-52.
  10. Ruiz Ortega M, Lorenzo O, Ruperez M, Esteban V, Suzuki Y, Mezzano S, et al. Role of the renin-angiotensin system in vascular diseases: expanding the field. Hypertension 2001; 38:1382-7.
  11. Velloso LA, Folli F, Sun XJ, White MF, Saad MJ, Kahn CR. Cross-talk between the insulin and angiotensin signaling systems. Proc Natl Acad Sci USA. 1996; 93:12490-5.
  12. Folli F, Kahn CR, Hansen H, Bouchie JL, Feener EP. Angiotensin II inhibits insulin signaling in aortic smooth muscle cells at multiple levels. A potential role for serine phosphorylation in insulin/angiotensin II crosstalk. J Clin Invest 1997; 100:2158-69.
  13. Behrendt D, Ganz P. Endothelial function. From vascular biology to clinical applications. Am J Cardiol 2002; 90:40L-48L.
  14. Strawn WB, Ferrario CM. Mechanisms linking angiotensin II and atherogenesis. Curr Opin Lipidol 2002; 13:505-12.
  15. Gauthier TW, Scalia R, Murohara T, Guo JP, Lefer AM. Nitric oxide protects against leukocyte-endothelium interactions in the early stages of hypercholesterolemia. Arterioscler Thromb Vasc Biol 1995; 15:1652-9.
  16. Kubes P, Suzuki M, Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 1991; 88:4651-5.
  17. Cornwell TL, Arnold E, Boerth NJ, Lincoln TM. Inhibition of smooth muscle cell growth by nitric oxide and activation of cAMP-dependent protein kinase by cGMP. Am J Physiol 1994; 267:C1405-13.
  18. De Graaf JC, Banga JD, Moncada S, Palmer RM, De Groot PG, Sixma JJ. Nitric oxide functions as an inhibitor of platelet adhesion under flow conditions. Circulation 1992; 85:2284-90.
  19. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288:373-6.
  20. Peng HB, Libby P, Liao JK. Induction and stabilization of I κ B alpha by nitric oxide mediates inhibition of NF-κB. J Biol Chem 1995; 270:14214-9.
  21. Vincent MA, Barrett EJ, Lindner JR, Clark MG, Rattigan S. Inhibiting NOS blocks microvascular recruitment and blunts muscle glucose uptake in response to insulin. Am J Physiol Endocrinol Metab 2003; 285:E123-9.
  22. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 1994; 74:1141-8.
  23. Zhang H, Schmeisser A, Garlichs CD, Plotze K, Damme U, Mugge A, et al. Angiotensin II-induced superoxide anion generation in human vascular endothelial cells: role of membrane-bound NADH-/NADPH-oxidases. Cardiovasc Res 1999; 44:215-22.
  24. Dandona P, Aljada A, Mohanty P, Ghanim H, Hamouda W, Assian E, et al. Insulin inhibits intranuclear nuclear factor κB and stimulates IκB in mononuclear cells in obese subjects: evidence for an anti-inflammatory effect J Clin Endocrinol Metab 2001; 86:3257-65.
  25. Dandona P, Aljada A, Mohanty P. The anti-inflammatory and potential anti-atherogenic effect of insulin: a new paradigm. Diabetologia 2002; 45:924-30.
  26. Anan F, Takahashi N, Ooie T, Hara M, Yoshimatsu H, Saikawa T. Candesartan, an angiotensin II receptor blocker, improves left ventricular hypertrophy and insulin resistance. Metabolism 2004; 53:777-81.
  27. Dandona P, Kumar V, Aljada A, Ghanim H, Syed T, Hofmayer D, et al. Angiotensin II receptor blocker valsartan suppresses reactive oxygen species generation in leukocytes, nuclear factor-κB, in mononuclear cells of normal subjects: evidence of an antiinflammatory action. J Clin Endocrinol Metab 2003; 88:4496-501.
  28. Baeuerle PA, Baltimore D. NF-κB: ten years after. Cell 1996; 87:13-20.
  29. Venugopal SK, Devaraj S, Yuhanna I, Shaul P, Jialal I. Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells. Circulation 2002; 106:1439-41.
  30. Pepys MB, Hirschfield GM. C-reactive protein: a critical update. J Clin Invest 2003; 111:1805-12.
  31. Griselli M, Herbert J, Hutchinson WL, Taylor KM, Sohail M, Krausz T, et al. C-reactive protein and complement are important mediators of tissue damage in acute myocardial infarction. J Exp Med 1999; 190:1733-40.
  32. Koh KK, Ahn JY, Han SH, Kim DS, Jin DK, Kim HS, et al. Pleiotropic effects of angiotensin II receptor blocker in hypertensive patients. J Am Coll Cardiol 2003; 42:905-10.
  33. Tsutamoto T, Wada A, Maeda K, Mabuchi N, Hayashi M, Tsutsui T, et al. Angiotensin II type 1 receptor antagonist decreases plasma levels of tumor necrosis factor alpha, interleukin-6 and soluble adhesion molecules in patients with chronic heart failure. J Am Coll Cardiol 2000; 35:714-21.
  34. Rueckschloss U, Quinn MT, Holtz J, Morawietz H. Dose-dependent regulation of NAD(P)H oxidase expression by angiotensin II in human endothelial cells: protective effect of angiotensin II type 1 receptor blockade in patients with coronary artery disease. Arterioscler Thromb Vasc Biol 2002; 22:1845-51.
  35. Navalkar S, Parthasarathy S, Santanam N, Khan BV. Irbesartan, an angiotensin type 1 receptor inhibitor, regulates markers of inflammation in patients with premature atherosclerosis. J Am Coll Cardiol 2001; 37:440-4.
  36. Lauten WB, Khan QA, Rajagopalan S, Lerakis S, Rahman ST, Parthasarathy S, et al. Usefulness of quinapril and irbesartan to improve the anti-inflammatory response of atorvastatin and aspirin in patients with coronary heart disease. Am J Cardiol 2003; 91:1116-9.
  37. Lindholm LH, Ibsen H, Dahlof B, Devereux RB, Beevers G, de Faire U, et al. Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 2002; 359:1004-10.
  38. Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 2000; 342:145-53.
  39. McFarlane SI, Kumar A, Sowers JR. Mechanisms by which angiotensin-converting enzyme inhibitors prevent diabetes and cardiovascular disease. Am J Cardiol 2003; 91:30H-37H.
  40. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Heart Outcomes Prevention Evaluation Study Investigators. Lancet 2000; 355:253-9.
  41. Vaughan DE, Rouleau JL, Ridker PM, Arnold JM, Menapace FJ, Pfeffer MA. Effects of ramipril on plasma fibrinolytic balance in patients with acute anterior myocardial infarction. HEART Study Investigators. Circulation 1997; 96:442-7.
  42. Hollenberg NK, Fisher ND, Price DA. Pathways for angiotensin II generation in intact human tissue: evidence from comparative pharmacological interruption of the renin system. Hypertension 1998; 32:387-92.
  43. Petrie MC, Padmanabhan N, McDonald JE, Hillier C, Connell JM, McMurray JJ. Angiotensin converting enzyme (ACE) and non-ACE dependent angiotensin II generation in resistance arteries from patients with heart failure and coronary heart disease. J Am Coll Cardiol 2001; 37:1056-61.
  44. Mohanty P, Aljada A, Ghanim H, Hofmeyer D, Tripathy D, Syed T, et al. Evidence for a potent antiinflammatory effect of rosiglitazone. J Clin Endocrinol Metab 2004; 89:2728-35.
  45. Ghanim H, Garg R, Aljada A, Mohanty P, Kumbkarni Y, Assian E, et al. Suppression of nuclear factor-kappaB and stimulation of inhibitor κB by troglitazone: evidence for an anti-inflammatory effect and a potential antiatherosclerotic effect in the obese. J Clin Endocrinol Metab 2001; 86:1306-12.
  46. Diep QN, El Mabrouk M, Cohn JS, Endemann D, Amiri F, Virdis A, et al. Structure, endothelial function, cell growth, and inflammation in blood vessels of angiotensin II-infused rats: role of peroxisome proliferator-activated receptor-gamma. Circulation 2002; 105:2296-302.
  47. Takeda K, Ichiki T, Tokunou T, Funakoshi Y, Iino N, Hirano K, et al. Peroxisome proliferator-activated receptor gamma activators downregulate angiotensin II type 1 receptor in vascular smooth muscle cells. Circulation 2000; 102:1834-9.

 
 
 
 
 
 
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
Artículos relacionadosMás relacionadosAtículos relacionados
TERAPIA HIPOLIPEMIANTE ÓPTIMA EN PACIENTES CON DIABETES TIPO 2 Y RIESGO CARDIOVASCULAR ALTO
Diabetes & Metabolism Journal 47(6):818-825
Difundido en siicsalud: 19 mar 2024
FACTORES PREDICTIVOS DE LOS TRASTORNOS HIPERTENSIVOS DEL EMBARAZO
Revista Latinoamericana de Hipertensión 18(3):1-4
Difundido en siicsalud: 21 mar 2024
LAS ESTRATEGIAS DE PREVENCIÓN DE LA HIPERTENSIÓN PUEDEN MEJORAR EL ENVEJECIMIENTO SALUDABLE
The Lancet Healthy Longevity 4(9):470-477
Difundido en siicsalud: 1 feb 2024
ua31618