Conceptos Categóricos

PREDICCION DE LA CANTIDAD DE CARBOHIDRATOS UTILIZADOS DURANTE EL EJERCICIO
Artículos relacionadosArtículos relacionadosArtículos relacionados
Artículos afines de siicsalud publicados en los últimos 4 meses
ÍNDICE DE FRAGILIDAD EN PACIENTES CON DIABETES MELLITUS TIPO 2
Diabetes Care 44:1622-1629
Difundido en siicsalud: 19 nov 2021
CONTROL BRUSCO DE LA GLUCEMIA Y NEUROPATÍA INDUCIDA POR LA DIABETES
Canadian Medical Association Journal 193(28):1-4
Difundido en siicsalud: 11 nov 2021

PREDICCION DE LA CANTIDAD DE CARBOHIDRATOS UTILIZADOS DURANTE EL EJERCICIO

(especial para SIIC © Derechos reservados)
El presente estudio ilustra que el concepto del "pulso de glucosa", es decir la tasa de oxidación de la glucosa expresada por unidad de frecuencia cardíaca, podría ser de utilidad en la práctica clínica para predecir la cantidad de carbohidratos utilizados durante el ejercicio con el objetivo de prevenir la hipoglucemia en pacientes con diabetes tipo 1.
francescato9.jpg Autor:
Maria Pia Francescato
Columnista Experto de SIIC

Institución:
Department of Biomedical Sciences and Technologies, University of Udine


Artículos publicados por Maria Pia Francescato
Coautores
Mario Geat* Luigi Cattin* 
MD, Department of Clinical, Morphological and Technological Sciences, University of Trieste, Trieste, Italia*
Recepción del artículo
15 de Agosto, 2006
Aprobación
17 de Agosto, 2006
Primera edición
15 de Enero, 2007
Segunda edición, ampliada y corregida
7 de Junio, 2021

Resumen
Durante el ejercicio, los pacientes diabéticos sufren con frecuencia desequilibrios metabólicos debido a la ausencia de secreción de insulina. El objetivo primario de este estudio fue identificar un método simple para predecir la cantidad de glucosa oxidada durante el ejercicio. Quince pacientes con diabetes tipo 1 y 15 controles sanos apareados (18 a 45 años; masa corporal 70.5 ± 9.5 kg) se ejercitaron en un cicloergómetro a 4 intensidades durante 10 minutos en cada caso. Durante los últimos 5 minutos de cada prueba se registró el consumo de oxígeno, la producción de dióxido de carbono y la frecuencia cardíaca (FC). Estos datos permitieron calcular la tasa de oxidación de la glucosa (GLUox) y la relación entre GLUox y la FC fue definida como "pulso de glucosa". A los pacientes se les administraron cantidades estimadas de carbohidratos antes del ejercicio o durante su realización. Durante el ejercicio, la GLUox aumentó con el incremento de la FC sin diferencias significativas entre los grupos, mientras que el entrenamiento referido por los pacientes mostró un efecto significativo (p < 0.005). Las relaciones entre GLUox y el porcentaje de frecuencia cardíaca máxima (%FCmáx) puede describirse mediante las siguientes ecuaciones: GLUox = 0.504 · %FCmáx - 22.11 (n = 36; R = 0.888) [pacientes entrenados]; GLUox = 0.679 · %FCmáx - 22.05 (n = 29; R = 0.909) [pacientes sedentarios]. El presente estudio demuestra que el "pulso de glucosa" podría ser de utilidad en la práctica clínica para predecir la cantidad de carbohidratos utilizados durante el ejercicio.

Palabras clave
hipoglucemia, diabetes tipo 1, ejercicio, tasa de oxidación de la glucosa, aptitud física


Artículo completo

(castellano)
Extensión:  +/-8.25 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
Type 1 diabetic patients undergo frequent metabolic imbalances during exercise due to the lack of insulin release. The primary aim of this study was to identify a simple method for predicting the amount of oxidized glucose during exercise. Fifteen type 1 diabetic patients and 15 healthy matched controls (18-45 years; body mass: 70.5 ± 9.5 kg) exercised on a cycloergometer at 4 intensities for 10 minutes each. Oxygen consumption, carbon dioxide production and heart rate (HR) were acquired during the last 5 minutes of each test, enabling us to calculate the glucose oxidation rate (GLUox) and ratio between GLUox and HR defined as "glucose pulse". Patients were given estimated amounts of carbohydrates prior to and/or during exercise. During exercise, GLUox increased with increasing HR without significant difference between groups, whereas self-reported training showed a significant effect (p < 0.005). The relationships between GLUox and percentage of maximal heart rate (%HRmax) can be described by the following equations: GLUox = 0.504 · %HRmax - 22.11 (n = 36; R = 0.888) and GLUox = 0.679 · %HRmax - 22.05 (n = 29; R = 0.909) for trained and sedentary patients, respectively. The present study shows that the "glucose pulse" could be useful in clinical practice to predict the amount of carbohydrates utilized during exercise.

Key words
hypoglycemia, type 1 diabetes, exercise, glucose oxidation rate, fitness level


Full text
(english)
para suscriptores/ assinantes

Clasificación en siicsalud
Artículos originales > Expertos del Mundo >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Diabetología, Nutrición
Relacionadas: Atención Primaria, Endocrinología y Metabolismo, Medicina Deportiva, Medicina Familiar, Medicina Interna, Pediatría



Comprar este artículo
Extensión: 8.25 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Enviar correspondencia a:
Maria Pia Francescato, Deparment of Biomedical Sciences and Technologies, University of Udine, 33100, P.le Kolbe 4, Udine, Italia
Patrocinio y reconocimiento:
Agradecimientos: A los dres. E. Tosoratti y S. Lazzer por su ayuda durante las sesiones experimentales y al Prof. P. E. di Prampero por sus útiles comentarios.
Bibliografía del artículo
1. Stallknecht B, Larsen JJ, Mikines KJ, Simonsen L, Bulow J, Galbo H. Effect of training on insulin sensitivity of glucose uptake and lipolysis in human adipose tissue. Am J Physiol 2000; 279:E376-E385.
2. Landt K, Campaigne B, James F, Sperling M. Effect of exercise training on insulin sensitivity in adolescents with Type I diabetes. Diabetes Care 1985; 8:461-465.
3. American Diabetes Association. Diabetes Mellitus and Exercise. Diabetes Care 1997; 20:1908-1912.
4. Rowland T, Swabda LA, Biggs DE, Burke EJ, Reiter EO. Glycemic control with physical training in insulin-dependent diabetes mellitus. Am J Dis Child 1985; 139:307-310.
5. MacDonald MJ. Postexercise late-onset hypoglycemia in insulin-dependent diabetic patients. Diabetes Care 1987; 10:584-588.
6. Kemmer FW. Prevention of hypoglycemia during exercise in type I diabetes. Diabetes Care 1992; 15:1732-1735.
7. Landry GL, Allen DB. Diabetes mellitus and exercise. Clin Sport Med 1992; 11:403-418.
8. Francescato MP, Geat M, Fusi S, Stupar G, Noacco C, Cattin L. Carbohydrate requirement and insulin concentration during moderate exercise in type 1 diabetic patients. Metabolism 2004; 53:1126-1130.
9. Bergman BC, Brooks GA. Respiratory gas-exchange ratios during graded exercise in fed and fasted trained and untrained men. J Appl Physiol 1999; 86:479-487.
10. Pirnay F, Crielaard JM, Pallikarakis N, et al. Fate of exogenous glucose during exercise of different intensities in humans. J Appl Physiol 1982; 53:1620-1624.
11. Romijn JA, Coyle EF, Sidossis LS, et al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol 1993; 265:E380-E391.
12. Romijn JA, Coyle EF, Sidossis LS, Rosenblatt J, Wolfe RR. Substrate metabolism during different exercise intensities in endurance-trained women. J Appl Physiol 2000; 88:1707-1714.
13. Astrand PO, Rodahl K, Dahl HA, Stromme SB. Textbook of work physiology. Physiological bases of exercise. McGraw Hill Series in Health Education, Physical Education and Recreation. Fourth Edition. 2003, Windsor (Canada): Human Kinetics.
14. Sacks DB, Bruns DE, Goldstein DE, Maclaren NK, McDonald JM, Parrott M. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin Chem 2002; 48:436-472.
15. Hausswirth C, Bigard A, Le Chevalier J. The Cosmed K4 telemetry system as an accurate device for oxygen uptake measurements during exercise. Int J Sports Med 1997; 18:449-453.
16. McArdle WD, Katch FI, Katch VL. Essentials of Exercise Physiology. 2nd ed. 2000, Philadelphia, PA: Lippincott Williams & Wilkins.
17. Frayn KN. Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol 1983; 55:628-634.
18. Brooks GA, Mercier J. Balance of carbohydrate and lipid utilization during exercise: the "crossover" concept. J Appl Physiol 1994; 76:2253-2261.
19. Van Loon LJC, Greenhaff PL, Constantin-Teodosiu D, Saris WHM, Wagenmakers AJM. The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol (Lond) 2001; 536:295-304.
20. Coggan AR, Kohrt WM, Spina RJ, Bier DM, Holloszy JO. Endurance training decreases plasma glucose turnover and oxidation during moderate-intensity exercise in men. J Appl Physiol 1990; 68:990-996.
21. Turcotte LP, Richter EA, Kiens B. Increased plasma FFA uptake and oxidation during prolonged exercise in trained vs. untrained humans. Am J Physiol Endocrinol Metab 1992; 262:E791-E799.
22. Hurley BF, Nemeth PM, Martin III WH, Hagberg JM, Dalsky GP, Holloszy JO. Muscle triglyceride utilization during exercise: effect of training. J Appl Physiol 1986; 60:562-567.
23. Matzinger O, Schneiter P, Tappy L. Effect of fatty acids on exercise plus insulin-induced glucose utilization in trained and sedentary subjects. Am J Physiol Endocrinol Metab 2002; 282:E125-E131.
24. Ravussin E, Bogardus C, Scheidegger K, Lagrange B, Horton ED, Horton ES. Effect of elevated FFA on carbohydrate and lipid oxidation during prolonged exercise in humans. J Appl Physiol 1986; 60:893-900.
25. Achten J, Jeukendrup AE. The effect of pre-exercise carbohydrate feedings on the intensity that elicits maximal fat oxidation. J Sports Sci 2003; 21:1017-1024.
26. Coyle EF, Jeukendrup AE, Wagenmakers AJM, Saris WHM. Fatty acid oxidation is directly regulated by carbohydrate metabolism during exercise. Am J Physiol 1997; 273:E268-275.
27. McConell GK, Canny BJ, Daddo MC, Nance MJ, Snow RJ. Effect of carbohydrate ingestion on glucose kinetics and muscle metabolism during intense endurance exercise. J Appl Physiol 2000; 89:1690-1698.
28. Jeukendrup AE, Raben A, Gijsen A, et al. Glucose kinetics during prolonged exercise in highly trained human subjects: effect of glucose ingestion. J Physiol (Lond) 1999; 515:579-589.
29. Caron A, Lavoie C, Péronnet F, Hillaire-Marcel C, Massicotte D. Oxidation of 13C glucose ingested before and/or during prolonged exercise. Eur J Appl Physiol 2004; 91:217-223.
30. Utter AC, Kang J, Nieman DC, et al. Carbohydrate supplementation and perceived exertion during prolonged running. Med Sci Sport Exer 2004; 36:1036-1041.
31. Jeukendrup AE. Carbohydrate intake during exercise and performance. Nutrition 2004; 20:669-677.
32. Romijn JA, Coyle EF, Hibbert J, Wolfe RR. Comparison of indirect calorimetry and a new breath 13C/12C ratio method during strenuous exercise. Am J Physiol 1992; 263:64-71.
33. Montain SJ, HopperMK, Coggan AR, Coyle EF. Exercise metabolism at different time intervals after a meal. J Appl Physiol 1991; 70:882-888.
34. Francescato MP, Geat M, Tosoratti E, Noacco C. ECRES, a software to prevent the exercise induced hypoglycaemia in type 1 diabetic patients: preliminary results. In: Book of Abstracts. 11th annual Congress of the European College of Sport Science. 5-8 July 2006, Lausanne (Switzerland).

 
 
 
 
 
 
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
Artículos relacionadosMás relacionadosAtículos relacionados
INICIO DEL TRATAMIENTO CON ESTATINAS Y PROGRESIÓN DE LA DIABETES
JAMA Internal Medicine
Difundido en siicsalud: 28 oct 2021
DIABETES TIPO 1 EN LA REGIÓN DE LOMBARDÍA, ITALIA, DURANTE LA PANDEMIA DE COVID-19
EclinicalMedicine 39(101067):1-6
Difundido en siicsalud: 17 sep 2021
ua31618
-->