PATOGENIA, TRATAMIENTO Y PREVENCION DE LA NEFROPATIA INFANTIL ASOCIADA AL VIH




Artículos relacionadosArtículos relacionadosArtículos relacionados
Artículos afines de siicsalud publicados en los últimos 4 meses
LA ATROPINA EN CONCENTRACIONES BAJAS PARA EL TRATAMIENTO DE LA PROGRESIÓN DE LA MIOPÍA INFANTIL
JAMA Ophthalmology 141(10):990-999
Difundido en siicsalud: 25 mar 2024

PATOGENIA, TRATAMIENTO Y PREVENCION DE LA NEFROPATIA INFANTIL ASOCIADA AL VIH

(especial para SIIC © Derechos reservados)
La infección por VIH-1, al igual que factores genéticos y ambientales, parecen desempeñar un papel importante en la patogenia de la nefropatía infantil asociada al VIH. La TARGA está considerada un tratamiento promisorio para evitar su progresión.
Autor:
Pingato Tang
Columnista Experto de SIIC
Artículos publicados por Pingato Tang
Coautor
Patricio E Ray* 
Washington D.C., EE.UU.*
Recepción del artículo
30 de Enero, 2007
Aprobación
1 de Marzo, 2007
Primera edición
26 de Junio, 2007
Segunda edición, ampliada y corregida
7 de Junio, 2021

Resumen
Los afroamericanos infectados por el virus de la innmunodeficiencia humana (VIH-1) corren riesgo de presentar un síndrome renal denominado nefropatía asociada al VIH. Esta nefropatía se caracteriza por la presencia de proteinuria importante y por la rápida progresión hasta la enfermedad renal terminal. Estudios renales de necropsia y biopsia mostraron riñones grandes y edematosos con una combinación de glomeruloesclerosis focal y segmentaria, y lesiones tubulointersticiales con dilatación tubular microquística. Este artículo examinará los conceptos relevantes relacionados con la patogenia de la nefropatía infantil asociada al VIH. La infección por VIH-1 parece desempeñar un papel clave en la patogenia de la nefropatía asociada al VIH, al menos parcialmente, al afectar el crecimiento y la diferenciación de las células epiteliales renales y al aumentar el reclutamiento de las células inflamatorias y los factores de crecimiento circulantes que fijan la heparina. Sin embargo, hasta la fecha no se conoce totalmente el papel exacto que desempeña el VIH-1 en la patogenia de la nefropatía asociada al VIH. Varios factores genéticos y ambientales, además del VIH-1, parecen desempeñar un papel clave en este proceso. Se necesita más investigación para dilucidar la contribución clave de cada uno de estos factores. La terapia antirretroviral de gran actividad (TARGA) parece ser la alternativa más promisoria para prevenir la progresión de la nefropatía infantil asociada al VIH. Es de esperar que mejores programas de prevención y tratamiento conduzcan a la erradicación de esta enfermedad renal en los niños.

Palabras clave
nefropatía por VIH, niños, FGF-2, proteoglucanos heparansulfatos, infección por VIH 1


Artículo completo

(castellano)
Extensión:  +/-13.97 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
African Americans infected with the human immunodeficiency virus (HIV-1) are at risk of developing a renal syndrome named HIV-associated nephropathy (HIVAN). HIVAN is characterized by the presence of heavy proteinuria and rapid progression to end stage renal disease. Renal autopsy and biopsy studies showed large edematous kidneys with a combination of focal segmental glomerulosclerosis (FSGS) and tubulointerstitial lesions with microcystic tubular dilatation. This article will discuss relevant concepts related to the pathogenesis of childhood HIVAN. HIV-1 infection appears to play a key role in the pathogenesis of HIVAN, at least partially by affecting the growth and differentiation of renal epithelial cells, and by enhancing the renal recruitment of inflammatory cells and circulating heparin binding growth factors. However, to date, the exact role that HIV-1 plays in the pathogenesis of HIVAN is not completely understood. Several genetic and environmental factors, in addition to HIV-1, seem to play a key role in this process. More research is needed to elucidate the relative contribution of each of these factors. Highly active anti-retroviral therapy (HAART) appears to be the most promising treatment to prevent the progression of childhood HIVAN. Hopefully, better prevention and treatment programs will lead to the eradication of this renal disease in children.

Key words
HIV-nephropathy, children, FGF-2, heparan sulfate proteoglycans, HIV-1 infection


Full text
(english)
para suscriptores/ assinantes

Clasificación en siicsalud
Artículos originales > Expertos del Mundo >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Infectología, Pediatría
Relacionadas: Medicina Interna, Nefrología y Medio Interno



Comprar este artículo
Extensión: 13.97 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Enviar correspondencia a:
Patricio E Ray, Children's Research Institute, Children's National Medical Center , 111 Michigan Av, Room 5111,, Washington D.C., EE.UU.
Patrocinio y reconocimiento:
Este estudio fue financiado por los subsidios de los National Institutes of Health R0-1 DK-49419 y RO-1 HL 55605 y la Fundación Argentina para el Desarrollo Infantil, Buenos Aires, Argentina.
Bibliografía del artículo
1. Fauci SA. HIV and AIDS. 20 years of science. Nature Med 9:839-843, 2003.
2. Gallo RC. Human retrovirus after 20 years; a perspective from the past and prospects for their future control. Immunol Rev 185:236-265, 2002.
3. Rao TKS, Friedman EA, Nicastri AD. The types of renal disease in the acquired immunodeficiency syndrome. N Engl J Med 16:1062-1068, 1987.
4. Rao TK, Filippone EJ, Nicastri AD, Landesman SH, Frank S, Chen CK, Friedman EA. Associated focal and segmental glomerulosclerosis in the acquired immunodeficiency syndrome. N Engl J Med 310:669-673, 1984.
5. Pardo V, Aldana M, Colton RM, Fischl MA, Jaffe D, Moskowitz L, et al. Glomerular lesions in the acquired immunodeficiency syndrome. Ann Intern Med 101:429-434, 1984.
6. Pardo V, Meneses R, Ossa L, Jaffe DJ, Strauss J, Roth D, et al. AIDS-related glomerulopathy. Occurrence in specific risk groups. Kidney Int 31:1167-1173, 1987.
7. Kopp JB, Winkler C. HIV-associated nephropathy in African Americans. Kidney Int 83:S43-S49, 2003.
8. Freedman BI, Soucie JM, Stone SM, Pegram S. Familial clustering of end stage renal disease in blacks with HIV-associated nephropathy. Am J Kidney Dis 34:254-258, 1999.
9. Barisoni L, Kriz W, Mundel P, D'Agati V. The dysregulated podocyte phenotype: A novel concept in the pathogenesis of collapsing idiopathic focal segmental glomerolusclerosis and HIV-associated nephropathy. J Am Soc Nephrol 10:51-61, 1999.
10. Bourgoignie JJ, Pardo V. The nephropathology in HIV-1 virus infection. Kidney Int 40(35):S19-S23, 1991.
11. D'Agati V, Appel GB. HIV infection and the kidney. J Am Soc Nephrol 8:138:152, 1997.
12. Strauss J, Abitol C, Zilleruelo G, Scott G, Paredes A, Malaga S, et al. Renal disease in children with acquired immunodeficiency syndrome. N Engl J Med 321:625-630, 1989.
13. Ray PE, Rakusan T, Loechelt BJ, Selby DM, Liu XH, Chandra RS. HIV-1 associated nephropathy in children from the Washington, D.C. area: 12 years' experience. Semin Nephrol 18:396-405, 1998.
14. Ray PE, Xu L, Rakusan T, Liu XH. A 20-year history of childhood HIV-associated nephropathy. Pediatr Nephrol 19:1075-1092, 2004.
15. Dijkman HB, Weening JJ, Smeets B, Verrijp KC, Van Kuppevelt TH, Assmann KK, et al. Proliferating cells in HIV and pamidronate-associated collapsing focal segmental glomerulosclerosis are parietal epithelial cells. Kidney Int 70:388-344, 2006.
16. Shirai A, Klinman DM. Immunization with recombinant gp160 prolongs the survival of HIV-transgenic mice. AIDS Res and Hum Retroviruses 9:979-983, 1993.
17. Singhal PC, Sagar S, Chandra D, Garg P. Human immunodeficiency virus-1 gp120 and gp160 envelope proteins modulate mesangial cell gelatinolytic activity. Am J Pathol 147:25-32, 1995.
18. Conaldi PG, Botelli A, Baj A, Serra C, Fiore L, Federico G, et al. Human Immunodeficiency virus-1 Tat induces hyperproliferation and dysregulation of renal glomerular epithelial cells. Am J Pathol 161:53-61, 2002.
19. Hanna Z, Kay DG, Rebai N, Guimond A, Jothy S, Jolicoeur P. Nef harbors a major determinant of pathogenicity for an AIDS-like disease induced by HIV-1 in transgenic mice. Cell 95:163-175, 1998.
20. Husain M, Gussella GL, Klotman ME, Gelman IH, Ross MD, Schwartz EJ, et al. HIV-1 Nef induces proliferation and anchorage-independent growth in podocytes. J Am Soc Nephrol 13:1806-1815, 2002.
21. Sunamoto M, Husain M, He JC, Schwartx EJ, Klotman PE. Critical role for Nef in HIV-1 induced podocyte dedifferentiation. Kidney Int 64:1695-1701, 2003.
22. He JC, Husain M, Sunamoto M, D'Agati VD, Klotman ME, Iyengar R, et al. Nef stimulates proliferation of glomerular podocytes through activation of Src-dependent Stat3 and MAPK1,2 pathways. J Clin Invest 114:643-651, 2004.
23. Dickie P, Roberts A, Uwiera R, Witmer J, Sharma K, Kopp JB. Focal glomerulosclerosis in proviral c-fms transgenic mice links Vpr expression to HIV-associated nephropathy. Virology 322:69-81, 2004.
24. Jowett JB, Planelles V, Poon B, Shah NP, Chen ML, Chen IS. The human immunodeficiency virus type 1 vpr gene arrests infected T cells in the G2 + M phase of the cell cycle. J Virol 69:6304-6313, 1995.
25. Zhong J, Zuo Y, Ma J, Fogo AB, Jolicoeur P, Ichikawa I, et al. Expression of HIV-1 genes in podocytes alone can lead to the full spectrum of HIV-1 associated nephropathy. Kidney Int 68:1048-1060, 2005.
26. Cohen AH, Sun NCJ, Shapshak P, Imagawa DT. Demonstration of human immunodeficiency virus in renal epithelium in HIV-associated nephropathy. Mod Pathol 1:87-97, 1989.
27. Bruggeman LA, Ross MD, Tanji N, Cara A, Dikman S, Gordon RE, et al. Renal epithelium is a previously unrecognized site of HIV-infection. J Am Soc Nephrol 11:2089-2087, 2000.
28. Marras D, Bruggeman LA, Gao F, Tanji N, Mansukhani MM, Cara A, et al. Replication and compartimentalization of HIV-1 in the kidney epithelium of patients with HIV-associated nephropathy. Nat Med 8:522-526, 2002.
29. Wintson JA, Bruggeman LA, Ross MD, Jacobson L, Ross L, D'Agati VD, et al. Nephropathy and establishment of a renal reservoir of HIV type 1 during primary infection. N Engl J Med 344:1979-1984, 2001.
30. Di Belgiosjoso GB, Genderini A, Vago L, Parravicini C, Bertoli S, Landriani N. Absence of HIV antigens in renal tissue from patients with HIV-associated nephropathy. Nephrol Dial Transplant 5:489-492, 1990.
31. Alpers CR, McClure J, Bursten SL. Human mesangial cells are resistant to productive infection by multiple strains of human immunodeficiency virus types 1 and 2. Am J Kidney Dis 19:126-130, 1992.
32. Eitener F, Cui Y, Hudkins KL, Anderson DM, Schmidt A, Morton WR, Alpers CE. Chemokine receptor (CCR5) expression in human kidneys and in the HIV infected macaque. Kidney Int 54:1945-1954, 1998.
33. Eitner F, Cui Y, Hudkins KL, Stokes MB, Segerer S, Mack M, et al. Chemokine receptor CCR5 and CXCR4 expression in HIV-associated kidney disease. J Am Soc Nephrol 11:856-867, 2000.
34. Ray PE, Bruggeman L, Weeks B, Kopp J, Bryant J, Owens J et al. Role of bFGF and its low affinity receptors in the pathogenesis of HIV-associated nephropathy in transgenic mice. Kidney Int 46:759-772, 1994.
35. Dickie P, Felser J, Eckhaus M, Bryant J, Silver J, Marinos N, et al. HIV-associated nephropathy in transgenic mice expressing HIV-1 genes. Virology 185:109-119, 1991.
36. Kopp JB, Klotman ME, Adler SH, Bruggeman LA, Dickie P, Marinos NJ, et al. Progressive glomerulosclerosis and enhanced renal accumulation of basement membrane components in mice transgenic for human immunodeficiency virus type 1 genes. Proc Natl Acad Sci USA 89:1577-1581, 1992.
37. Reid W, Sadowska M, Denaro R, Rao S, Foulke Jr J, Hayes N, et al. An HIV-1 transgenic rat that develops HIV-related pathology and immunology dysfunction. Proc Natl Acad Sci 98:9271-9276, 2001.
38. Ray PE, Liu XL, Robinson RL, Reid W, Xu L, Owens JW, et al. A novel HIV-1 transgenic rat model of childhood HIV-1 associated nephropathy. Kidney Int 63:2242-2253, 2003.
39. Bruggeman LA, Dikman S, Meng C, Quaggin SE, Coffman TM, Klotman PE. Nephropathy in human immunodeficiency virus-1 transgenic mice is due to renal transgene expression. J Clin Invest 100:84-92, 1997.
40. Tinkle BT, Ngo L, Luciw PA, Maciag T, Jay G. Human Immunodeficiency Virus-associated vasculopathy in transgenic mice. J Virol 71:4809-4814, 1997.
41. Tinkle BT, Ueda H, Ngo L, Luciw PA, Shaw K, Rosen CA, et al. Transgenic dissection of HIV-genes involved in lymphoid depletion. J Clin Invest 100:32-39, 1997.
42. Zietz C, Hotz B, Sturz M, Rauch E, Penning R, Lohrs U. Aortic endothelium in HIV-1 infection. Chronic injury, activation and increased leukocyte adherence. Am J Pathol 149:1887-1898, 1996.
43. Bussolino F, Mitola S, Serini G, Barillari G, Ensoli B. Interactions between endothelial cells and HIV-1. Int J Biochem Cell Biol 33:371-390, 2001.
44. Gilles PN, Lathey JL, Spector SA. Replication of macrophage-tropic and T-cell-tropic strains of Human Immunodeficiency Virus type 1 is augmented by macrophage-endothelial cell contact. J Virol 69:2133-2139, 1995.
45. Ascheri G, Sgadari C, Bugarini R, Bogner J, Schatz O, Ensoli B, et al. Serum concentration of fibroblast growth factor 2 are increased in HIV-1 type-infected patients and inversely correlated to survival probability. AIDS Res Hum Retroviruses 17:1035-1039, 2001.
46. Ray PE, Liu XH, Xu L, Rakusan T. Accumulation of bFGF in children with HIV-1 associated hemolytic uremic syndrome. Pediatr Nephrol 13:586-593, 1999.
47. Gharavi AG, Ahmad T, Wong RD, Hooshyar R, Vaughn J, Oller S, et al. Mapping a locus for susceptibility to HIV-1 associated nephropathy to mouse chromosome 3. Proc Natl Acad Sci USA 101:2488-2493, 2004.
48. Kim JM, Wu H, Green G, Winkler CA, Kopp JB, Miner JH, et al. CD2-associated protein haploinsufficiency is linked to glomerular disease susceptibility. Science 300:1298-1300, 2003.
49. Gospodarowicz D, Ferrara N, Schweigerer L, Neufeld G. Structural characterization and biological functions of fibroblast growth factor. Endocrine Reviews 8:95-114, 1987.
50. Wellstein A, Czubayko F. Inhibition of fibroblast growth factors. Breast Cancer and Res Treatment 38:109-119, 1996.
51. Ensoli B, Gendelman R, Markham P, Fiorelli V, Colombinin S, Raffeld M, et al. Synergy between basic FGF and HIV-1 Tat protein in induction of Kaposi's sarcoma. Nature 371:674-680, 1994.
52. Li Z, Jerebtsova M, Liu XH, Tang P, Ray PE. Novel cystogenic role of basic fibroblast growth factor in developing rodent kidneys. Am J Physiol Renal Physiol 291:F289-F296, 2006.
53. Peoples GE, Blotnick S, Takahashi K, Freeman MR, Klasgsbrun M, Eberlein TJ. T lymphocytes that infiltrate tumors and atherosclerotic-plaques produce heparin-binding epidermal growth factor-like growth factor and basic fibroblast growth factor: a potential pathologic role. Proc Natl Acad Sci USA 95:6547-6551, 1995.
54. Celli G, LaRochelle J, Mackem S, Sharp R, Merlino G. Soluble dominant-negative receptor uncovers essential roles for fibroblast growth factors in multi-organ induction and patterning. EMBO J 17:1642-1655, 1998.
55. Clayton A, Thomas J, Thomas GJ, Davies M, Steadman R. Cell surface heparan sulfate proteoglycans control the response of renal interstitial fibroblasts to fibroblast growth factor-2. Kidney Int 59:2084-2094, 2001.
56. Sasaki T, Jyo Y, Tanda N, Kawakami Y, Nohno T, Tamai H, et al. Changes in glomerular epithelial cells induced by FGF-2 and FGF-2 neutralizing antibody in puromycin aminonucleoside nephropathy. Kidney Int 51:301-309, 1999.
57. Kriz W, Hahnel B, Rosener S, Elger M. Long term treatment of rats with FGF-2 results in focal segmental glomerulosclerosis. Kidney Int 48:1435-1450, 1995.
58. Morita H, Shinzato T, David G, Mizutani A, Habuchi H, Fujita Y, et al. Basic fibroblast growth factor-binding of heparan sulfate in the human glomerulosclerosis and renal tubulointerstitial fibrosis. Lab Invest 71:528-535, 1984.
59. Floege J, Kriz W, Schulze M, Susani M, Kerjaschki D, Mooney A, et al. Basic fibroblast growth factor augments podocytes injury and induces glomerulosclerosis in rats with experimental membranous nephropathy. J Clin Invest 96:2809-2819, 1995.
60. Naparsteck Y, Cohen IR, Fuks Z, Vlodavsky I. Activated T lymphocytes produce a matrix-degrading heparan sulphate endoglycosidase. Nature 252:241-244, 1984.
61. Bashkin P, Doctrow S, Klagsbrun M, Svahan CM , Folkman J, Vlodavsky I. Basic Fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules. Biochemistry 28:1737-1743, 1989.
62. Tang P, Jerebtsova M, Przygodzki R, Ray PE. Fibroblast growth factor-2 increases the renal recruitment and attachment of HVI-infected mononuclear cells to renal tubular epithelial cells. Pediatr Nephrol 20:1708:1716, 2005.
63. Czubayko F, Liaudet-Coopman ED, Aigner A, Tuveson AT, Berchem GJ, Wellstein A. A secreted FGF-binding protein can serve as the angiogenic switch in human cancer. Nat Med 3:1137-1140, 1997.
64. Liu XH, Achim A, Xu L, Wellstein A, Ray PE. Up-regulation of a fibroblast growth factor binding protein in children with renal diseases. Kidney Int 59:1850-1858, 2001.
65. Ray PE, Liu XH, Henry D, Dye L, Xu L, Orenstein JM, et al. Infection of human primary renal epithelial cells with HIV-1 from children with HIV-associated nephropathy. Kidney Int 53:1217-1229, 1998.
66. Conaldi PG, Biancone L, Botelli A, Wasde-Evans A, Racusen LC, Boccellino M, et al. HIV-1 kills renal tubular epithelial cells in vitro by triggering an apoptotic pathway involving caspase activation and fas upregulation. J Clin Invest 102:2041-2049, 1998.
67. Ray PE, Garcia Soler A, Xu L, Soderland C, Blumenthal R, Puri A. Fusion of HIV-1 envelope expressing cells to human glomerular endothelial cells through a CXCR4 mediated mechanism. Pediatr Nephrol 20:1401-1409, 2005.
68. Berger EA, Murphy PM, Farber JM. Chemokine receptors as HIV-1 co-receptors: roles in viral entry, tropism, and disease. Annu Rev Immunol 17:657-700, 1999.
69. Liu XH, Hadley TJ, Xu X, Peiper SC, Ray PE. Up-regulation of Duffy antigen receptor expression in children with renal disease. Kidney Int 55:1491-1500, 1999.
70. Mack M, Kleinschmidt A, Bruhl H, Klier C, Nelson PJ, et al. Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles: A mechanism for cellular human immunodeficiency virus 1 infection. Nature Med 6:769-775, 2000.
71. O'Donnell MP, Chao CC, Gekker G, Modi KS, Kasiske BL, Keane WF. Renal cell cytokine production stimulates HIV-1 expression in chronically HIV-infected monocytes. Kidney Int 53:593-597, 1998.
72. Patel M, Yanagishita M, Roderiquez G, Bou-Habib DC, Oravecz T, Hascall VC, et al. Cell-surface heparan sulfate proteoglycans mediates HIV-1 infection of T-cell lines. AIDS Res Hum Retroviruses 9:167-174, 1993.
73. Roderiquez G, Oravecz T, Yanagishita M, Bou-Habbi DC, Mostowski H, Norcross MA. Mediation of Human Immunodeficiency Virus-type 1 binding by interaction of cell surface Heparan Sulfate Proteoglycans with the V3 region of envelope gp120-gp41. J Virol 69:2233-2239, 1995.
74. Mondor I, Ugolini S, Sattentau QJ. Human immunodeficiency virus type 1 attachment to HeLa CD4 Cells is CD independent and gp120 dependent and requires cell surface heparan sulfate proteoglycans. J Virol 72:3623-3634, 1998.
75. Moulard M, Lortat-Jacob H, Mondor I, Roca G, Wyatt R, Sodroski J, et al. Selective interactions of polyanions with basic surfaces on HIV-1 gp120. J Virol 74:1948-1960, 2000.
76. Saphire ACS, Bobardt MD, Zhang Z, David G, Gallay PA. Syndecans serve as attachment receptors for Human Immunodeficiency virus type 1 on macrophages. J Virol 75:9187-9200, 2001.
77. Argyris EG, Acheampong E, Nunnari G, Mukhtar M, Williams KJ, Pomerantz RJ. Human immunodeficiency virus type 1 enters primary human brain microvascular endothelial cells by a mechanism involving cell surface proteoglycans independent of lipid rafts. J Virol 77:12140-12151, 2003.
78. Oravecz T, Pall M, Wang J, Roderiquez G, Ditto M, Norcross MA. Regulation of anti-HIV-1 activity of RANTES by heparan sulfate proteoglycans. J. Immunol 159:4587-4592, 1997.
79. Ibrahim J, Griffin P, Coombe DR, Rider CC, James W. Cell-surface heparan sulfate facilitates human immodeficiency virus Type 1 entry into some cells lines but not primary lymphocytes. Virus Res 60:159-169, 1999.
80. Bobardt MD, Saphire HC, Yu X, Schueren Van Der, Zhang Z, David G, et al. Syndecan captures, protects, and transmits HIV to T lymphocytes. Immunity 18:27-39, 2003.
81. Gordon CJ, Muesing MA, Proudfoot AE, Power CA, Moore JP, Trkola A. Enhancement of HIV-type 1 infection by the CC-chemokine RANTES is independent of the mechanism of virus-cell fusion. J Virol 73:684-694, 1999.
82. Schols D, Struyf S, Van Damme J, Este JA, Henson G, De Clercq E. Inhibition of T-tropic HIV strains by selective antagonization of the chemokine receptor CXCR4. J Exp Med 186:1383-1343, 1997.
83. Albini A, Ferrini S, Benelli R, Sforzini S, Giunciuglio D, Aluigi MG, Proudfoot AEI, et al. HIV-1 Tat protein mimicry of chemokines. Proc Natl Acad Sci USA 95:13153-13158, 1998.
84. Tyago M, Rusnati M, Presta M, Giacca M. Internalization of HIV-1 Tat requires Cell surface heparan sulfate proteoglycans. J Biol Chem 276:3254-3261, 2001.
85. Rusnati M, Tulipano G, Urbinati C, Tanghetti E, Giuliani R, Giacca M, et al. The Basic Domain in HIV-1 Tat protein as a target for polysulfonated heparin-mimicking extracellular Tat antagonist. J Biol Chem 273(26):16027-16037, 1998.
86. Bieniasz PD, Grdina TA, Bogerd HP, Culen BR. Recruitment of a protein complex containing Tat and cyclin T1 to TAR governs the species specificity of HIV-1 Tat. EMBO J 23:7056-7065, 1998.
87. Westendorp MO, Frank R, Ochsenbauer C, Sticker K, Dhein J, Walczak H, et al. Sensitization of T cells to CD95-mediated apoptosis by HIV-Tat and gp120. Nature 375:497-500, 1995.
88. Jia H, Lohr M, Jezequel S, Davis D, Shaikh S, Selwood D, et al. Cysteine-rich and basic domain HIV-1 Tat peptides inhibit angiogenesis and induce endothelial cell apoptosis. Biochem Biophy Res Comm 283:469-479, 2001.
89. Boykins RA, Mahieux R, Shankavaram UT, Gho YS, Lee SF, Hewlett IK, et al. A short polypeptide domain of HIV-1 Tat proteins mediates pathogenesis. J Immunol 163:15-20, 1999.
90. Barillari G, Sgadari C, Fiorelli V, Samaniego F, Colombini S, Manzari V, et al. The Tat protein of human immunodeficiency virus type 1 promotes vascular cell growth and locomotion by engaging the a5 b1 and a v??b3 integrins and by mobilizing sequestered basic-FGF. Blood 94:663-672, 1999.
91. Toschi E, Barillari G, Sgadari C, Bacigalupo I, Cereseto A, Carlei D, et al. Activation of matrix-metalloproteinase-2 and membrane-type-1-matrix-metalloproteinase in endothelial cells and induction of vascular permeability in vivo by human immunodeficiency virus-1 Tat protein and basic fibroblast growth factor. Mol Biol Cell 12:2934-2946, 2001.
92. Mohan R, Sivak J, Ashton P, Russo LA, Pham BQ, Kasahara N, et al. Circuminoids inhibit the angiogenic response stimulated by fibroblast growth factor-2, including expression of matrix metalloproteinase gelatinase B. J Biol Chem 275:10405-10412, 2000.
93. Takeuchi A, Yoshizawa N, Yamamoto M, Sawasaki Y, Oda T, Senoo A, et al. Basic Fibroblast Growth Factor promotes proliferation of rat glomerular visceral epithelial cells in vitro. Am J Pathol 141:107-116, 1992.
94. Sasaki T, Hatta H, Osawa G. Cytokines and podocyte injury: the mechanism of fibroblast growth factor-2 induced podocyte injury. Nephrol Dial Transpl 14:33-34, 1999.
95. Szczech LA, Edwards LJ, Sanders LL, Van der Horst C, Bartlett JA, Heald AE, et al. Protease inhibitors are associated with a slowed progression of HIV-related renal diseases. Clin Nephrol 57:336-341, 2002.
96. Schwartz EJ, Szczech LA, Ross MJ, Klotman ME, Winston JA, Klotman PE. Highly active antiretroviral therapy and the epidemic of HIV+ end stage renal disease. J Am Soc Nephrol 16:2412-2420, 2005.
97. Wei A, Burns GC, Williams BA, Mohammed NB, Sivak SL. Long term renal survival in HIV-associated nephropathy with angiotensin-converting enzyme inhibition. Kidney Int 64:1462-1471, 2003.
98. Kumar MS, Sierka DR, Damask AM, Fyfe B, McAlack RF, Heifets M, Moritz MJ, et al. Safety and success of kidney transplantation and concomitant immunosuppression in HIV-positive patients. Kidney Int 67:1622-1629, 2005.
99. Bhagani S, Sweny PI, Brook K, British HIV association. Guidelines for kidney transplantation in patients with HIV disease. HIV Medicine 7:133-139, 2006.

 
 
 
 
 
 
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
Artículos relacionadosMás relacionadosAtículos relacionados
PREVENCIÓN Y TRATAMIENTO DE LAS INFECCIONES POR VIRUS RESPIRATORIO SINCITIAL
Revista Española de Quimioterapia :1-15
Difundido en siicsalud: 26 feb 2024
CALIDAD DE VIDA EN DERMATOLOGÍA PEDIÁTRICA
Anales de Pediatría 99(3):170-175
Difundido en siicsalud: 25 mar 2024
TRATAMIENTO CON LACTOFERRRINA DE LA ANEMIA POR DEFICIENCIA DE HIERRO EN NIÑOS
Turkish Journal of Pediatrics 65(4):1-12
Difundido en siicsalud: 22 feb 2024
ua31618