LA EPILEPSIA DEL LOBULO TEMPORAL PODRIA ESTAR INFLUIDA POR EL PASO DE LA ALBUMINA A TRAVES DE LA BARRERA HEMATOENCEFALICA





LA EPILEPSIA DEL LOBULO TEMPORAL PODRIA ESTAR INFLUIDA POR EL PASO DE LA ALBUMINA A TRAVES DE LA BARRERA HEMATOENCEFALICA

(especial para SIIC © Derechos reservados)
La rotura de la barrera hematoencefálica permite el paso de la albúmina al espacio extracelular cerebral, activando los astrocitos por medio del receptor TGF-β, que sufren cambios en la expresión genética.
pastorgomez9.jpg Autor:
Jesús Pastor Gómez
Columnista Experto de SIIC

Institución:
Hospital Universitario La Princesa


Artículos publicados por Jesús Pastor Gómez
Recepción del artículo
11 de Agosto, 2008
Aprobación
1 de Octubre, 2008
Primera edición
29 de Abril, 2009
Segunda edición, ampliada y corregida
7 de Junio, 2021

Resumen
Introducción: La epilepsia del lóbulo temporal (ELT) es el tipo más frecuente de epilepsia resistente a los fármacos en humanos. La necesidad de estudios invasivos y la resección de tejido permiten numerosos estudios acerca de su fisiopatología. Objetivos: Se revisan algunos de los datos y teorías más recientes sobre la fisiopatología de la ELT, haciendo especial referencia a la participación de la albúmina en la activación de los astrocitos tras la rotura de la barrera hematoencefálica (BHE). Se observa una remodelación de la excitación glutamatérgica y la inhibición gabaérgica que deriva en hiperexcitabilidad. Aunque se conocía desde hace tiempo la rotura de la BHE en la ELT, no se había asignado un papel a este aumento de permeabilidad. Recientemente, se demostró que dicha rotura permite el paso de la albúmina al espacio extracelular cerebral, activando los astrocitos por medio del receptor TGF-β, que sufren cambios en la expresión genética. Estos cambios podrían condicionar las modificaciones en la respuesta neuronal responsables de la hiperexcitabilidad. Conclusiones: El estudio multidisciplinario de la fisiopatología de la ELT en la última década nos ha permitido aumentar nuestro conocimiento sobre los procesos que subyacen a la génesis de las crisis, su clínica y evolución.

Palabras clave
albúmina, astrocitos, barrera hematoencefálica, EEG, esclerosis mesial, epilepsia del lóbulo temporal


Artículo completo

(castellano)
Extensión:  +/-8.69 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
Introduction: Temporal lobe epilepsy (TLE) is the most frequent form of pharmaco-resistant epilepsy in human. The necessity of invasive studies and epileptic tissue resection allow a number of studies pertaining to the pathophysiology. Objectives: Here, we review recent findings and theories pertaining to the pathophysiology of TLE, with special reference to astocyte activation by albumin after blood-brain barrier (BBB) increase in permeability. Data suggest that the common principle that appears to underlie the epileptic condition is the reorganization of excitation and inhibition resulting in hyperexcitability. From a long time, it had been observed an increase in permeability of BBB in epilepsy. However, no definitely role in the epileptogenesis had been ascribed to this disruption. Recently, it has been showed the BBB disruption allows that albumin goes into the extracellular space, activating astrocytes through TGF- receptor and inducing changes in gene expression. These changes can induce alterations in the neuronal response, underling the hyperexcitability. Conclusions: A multidisciplinary approach can help to fill gaps in our knowledge and to provide unique insights into the pathophysiology of TLE.

Key words
albumin, astrocytes, blood-brain barrier, EEG, mesial sclerosis, temporal lobe epilepsy


Clasificación en siicsalud
Artículos originales > Expertos de Iberoamérica >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Anatomía Patológica, Neurología
Relacionadas: Diagnóstico por Imágenes, Diagnóstico por Laboratorio, Medicina Interna



Comprar este artículo
Extensión: 8.69 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Enviar correspondencia a:
Jesús Pastor Gómez, Hospital Universitario La Princesa Unidad de Cirugía de la Epilepsia Sección de Neurofisiología Clínica, C/Diego de León 62, Madrid, España
Patrocinio y reconocimiento:
Este trabajo ha contado con financiación del Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica (I+D+I), Instituto de Salud Carlos III, Subdirección General de Evaluación y Fomento de la Investigación, PI060349.
Bibliografía del artículo

1. Berger H. Uber das Electrenkephalogram des Menschen (On the EEG in humans). Arch Psychiatr Nervenkr 87:527-570, 1929.
2. Gibbs FA, Davis H, Lennox WG. The EEG in epilepsy and in the impaired states of consciousness. Arch Neurol Psychiatry 34:1133, 1935.
3. Gibbs FA, Lennox WG, Gibbs EL. The electroencephalogram in diagnosis and in localization of epileptic seizures. Arch Neurol Psychiatry 36:1225-1235, 1936.
4. Jasper HH. Localized analyses of the function of the human brain by the electro-encephalogram. Arch Neurol Psychiatry 36:1131, 1936.
5. Alarcon G, Binnie CD, Elwes RDC, Polkey CE. Power spectrum and intracranial EEG patterns at seizure onset in partial epilepsy. Electroenceph Clin Neurophysiol 94:326-337, 1995.
6. Thakor NV, Shanbao T. Advances in quantitative electroencephalogram analysis methods. Ann Rev Biomed Eng 6:453-495, 2004.
7. Urrestarazu E, Iriarte J. Análisis matemático en el estudio de señales electroencefalográficas. Rev Neurol 41(7):423-434, 2005.
8. Goldensohn ES. Historical perspectives. En: Epilepsy: A Comprehensive Textbook, Editores: Engel J Jr, Pedley TA. Vol I, pp. 15-39, 1997.
9. Renshaw B, Forbes A, Morisno BR. Activity of isocortex and hippocampus: electrical studies with microelectrodes. J Neurophysiol 3:74-105, 1940.
10. Li CH, Jasper HH. Microelectrode studies of electrical activity of the cerebral cortex in the cat. J Physiol (Lond) 121:117-140, 1953.
11. Purpura DP. Nature of electrical potentials and synaptic organizations in cerebral and cerebellar cortex. Int Rev Neurobiol 1:47-163, 1959.
12. Kandel ER, Spencer WA. Electrophysiology of hippocampal neurons. I. Sequential invasion and synaptic organization. J Neurophysiol 24:225-242, 1961.
13. Kandel ER, Spencer WA. Electrophysiology of hippocampal neurons. II. After-potentials and repetitive firing. J Neurophysiol 24:243-259, 1961.
14. Kandel ER, Spencer WA. The pyramidal cell during hippocampal seizure. Epilepsia 2:63-69, 1961.
15. Goldensohn ES, Zablow L, Salazar AM. The penicillin focus, I: distribution of potential at the cortical surface. Electroencephalogr Clin Neurophysiol 42(4):480-492, 1977.
16. Matsumoto H, Amjone-Marsane C. Cortical cellular phenomena in experimental epilepsy: interictal manifestations. Exp Neurol 9:286-304, 1964.
17. Matsumoto H, Amjone-Marsane C. Cortical cellular phenomena in experimental epilepsy: ictal manifestations. Exp Neurol 9:305-326, 1964.
18. Creutzfeldt O, Watanabe S, Lux HD. Relations between EEG phenomena and potentials of single cortical cells II. Spontanous and covulsoid activity. Electroencephalogr Clin Neurophysiol 20:19-37, 1966.
19. Prince DA. The depolarization shift in "epileptic" neurons. Exp Neurol 21:467-485, 1968.
20. Goldensohn ES, Zablow L, Stein B. Interrelationships of form and latency of spike discharge from small areas of human cortex. Electroencephalogr Clin Neurophysiol 29:321-322, 1970.
21. Seiffert E, Dreier J, Ivens S, Bechmann I, Tomkins O, Heinemann U y col. Lasting blood-brain barrier disruption induces epileptic focus in the rat somatosensory cortex. J Neurosci 24:7829-36, 2004.
22. Van Vliet EA, Da Costa Araújo S, Van Schaik R, Aronica E, Gorter JA. Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain 130:521-534, 2007.
23. Oby E, Janigro D. The blood-brain barrier and epilepsy. Epilepsia 47:1761-1774, 2006.
24. Ramón y Cajal S. Contribución al conocimiento de la neuroglía del cerebro humano. En Araque y col., 2001.
25. Barres BA. Glial ion channels. Curr Opin Neurobiol 1:345-359, 1991.
26. Araque A, Carmignoto G, Haydon PH. Dynamic signalling between astrocytes and neurons. Ann Rev Physiol 63:795-813, 2001.
27. Araque A, Parpura V, Sanzgiri RP, Haydon PG. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208-215, 1999.
28. Ventura R, Harris KM. Three dimensional relationships between hippocampal synapses and astrocytes. J Neurosci 19:509-517, 1999.
29. Porter JT, McCarthy KD. Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J Neurosci 16:5073-81, 1996.
30. Kang J, Jiang L, Goldman SA, Nedergaard M. Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci 1:683-92, 1998.
31. Fiacco TA, McCarthy KD. Astrocyte calcium elevations: properties, propagation and effects on brain signalling. Glia 54:676-690, 2006.
32. Perea G, Araque A. Astrocytes potentiate transmitter release at single hippocampal synapses. Science 317:1083-1086, 2007.
33. Edwards R, Stonheimer H, Spencer DD, Lanerolle NC. Astrocytes from human hippocampal epileptogenic foci exhibit action potential-like responses. Epilepsia 39(4):347-354, 1998.
34. Nadal A, Fuentes E, McNaughton P. Glial cell responses to lysophospholipids bound to albumin in serum and plasma. Prog Brain Res 132:377-384, 2001.
35. Herman ST. Epilepsy after brain insult. Neurology 59(Suppl.5):S21-S26, 2002.
36. Korn A, Golan H, Melamed I, Pascual-Marqui R, Friedman A. Focal cortical dysfunction and blood-brain barrier disruption in patients with postconcussion syndrome. J Clin Neurophysiol 22(1):1-9, 2005.
37. Nadal A, Fuentes E, Pastor J, McNaughton P. Plasma albumin induces calcium waves in rat cortical astrocytes. Glia 19:343-351, 1997.
38. Nadal A, Fuentes E, Pastor J, McNaughton P. Albumin is a potent trigger of calcium signals and DNA synthesis in astrocytes. PNAS 92:1426-1430, 1995.
39. Hooper C, Taylor DL, Pocock JM et al. Pure albumin is a potent trigger of calcium signaling and proliferation in microglia but not macrophages or astrocytes. J Neurochem 92:1363-1376, 2005.
40. Fuentes E, Nadal A, McNaughton PA et al. Lysophospholipids trigger calcium signals but not DNA síntesis in cortical astrocytes. Glia 28:272-276, 1999.
41. Halliwell JV. M-current in human neocortical neurones. Neurosci Lett 67:1-6, 1986.
42. McCormick DA, Williamson A. Convergence and divergence of neurotransmitter action in human cerebral cortex. Proc Natl Acad Sci USA 86:8098-8102, 1989.
43. Foehring RC, Waters RS. Contributions of low-thresholds calcium current and anomalous rectifier (Ih) to slow depolarizations underlying burst firing in human neocortical neurons in vitro. Neurosci Lett 124:17-21, 1991.
44. Lorenzon NM, Foehing RC. Relationship between repetitive firing and afterhyperpolarizations in human neocortical neurons. J Neurophysiol 67:350-363, 1992.
45. Sayer RJ, Brown AM, Schwindt PC, Crill WE. Calcium currents in acutely isolated human neocortical neurons. J Neurophysiol 69:1596-1606, 1993.
46. Cummins TR, Xia Y, Haddad GG. Functional properties of rat and human neocortical voltage-sensitive sodium currents. J Neurophysiol 71:1052-1064, 1994.
47. Vreugdenhil M, Van Veelen CW, Van Rijes PC, Lopes Da Silva FH, Wadman WJ. Effect of valproic acido n sodium currents in cortical neuorns from patients with pharmaco-resistan temporal lobe epilepsy. Epilepsy Res 32:309-320, 1998.
48. Avoli M, Louvel J, Pumain R, Köhling F. Cellular and molecular mechanisms of epilepsy in the human brain. Progress in Neurobiol 77:166-200, 2005.
49. Avoli M, Olivier A. Electrophysiological properties and synaptic responses in the deep layers of the human epileptogenic neocortex maintained in vitro. J Neurophysiol 61:589-606, 1989.
50. Avoli M, Mattia D, Siniscaldhi A, Perrealult P, Tomaiuolo F. Pharmacology and electrophysiology of a synchronous GABA-mediated potential in the human neocortex. Neuroscience 62:655-666, 1994.
51. Strowbridge BW, Masukawa LM, Spencer DD, Sheperd GM. Hyperxcitability associated with localizable lesions in epileptic patients. Brain Res 587:158-163, 1992.
52. Menendez de la Prida L, Benavides-Piccione R, Sola RG, Pozo MA. Electrophysiological properties of interneurons from intraoperative spiking areas of epileptic human temporal neocortex. Neuroreport 13:1421-1425, 2002.
53. Williamson A, Patrylo PR, Lee S, Spencer DD. Physiology of human cortical neurons adjacent to cavernous malformations. Epilepsia 44:1413-1419, 2003.
54. Schwartzkroin PA, Knowles WD. Intracellular study of human epileptic cortex: in vitro maintenance of epileptiform activity? Science 223:709-712, 1984.
55. Schwartzkroin PA, Haglund MM. Spontaneous rhythmic synchronous activity in epileptic human and normal monkey temporal lobe. Epilepsia 27:523-533, 1986.
56. Köhling R, Lücke A, Straub H, Speckmann EJ, Tuxhorn I, Wolf P y col. Spontaneous sharp waves in human neocortical slices excised from epileptic patients. Brain 121:1073-1087, 1998.
57. Köhling R, Höhling JM, Straub H, Kuhlmann D, Kuhnt U, Tuxhorn I, y col. Optical monitoring of neuronal activity during spontaneous sharp waves in chronically epileptic human neocortical tissue. J Neurophysiol 84:2161-2165, 2000.
58. McCormick DA. GABA as an inhibitory neurotransmitter in human cerebral cortex. J Neurophysiol 54:782-806, 1989.
59. Hwa GG, Avoli M, Oliver A, Villemure JG. Bicucuclline-induced epileptogenesis in the human neocrtex maintained in vitro. Exp Brain Res 83:329-339, 1991.
60. Gutnick MJ, Connors BW, Prince DA. Mechanisms of neocortical epileptogenesis in vitro. J Neurophysiol 48:1321-1335, 1982.
61. Hwa GG, Avoli M. Excitatory synaptic transmission mediated by NMDA and non-NMDA receptors in the superficial/middle layers of the epileptogenic human neocortex maintained in vitro. Neurosci Lett 143:83-86, 1992.
62. Isokawa M, Levesque M, Fried I, Engel J Jr. Glutamate currents in morphologically identified human dentate granule cells in temporal lobe epilepsy. J Neurophysiol 77:3355-3369, 1997.
63. Staley KJ, Soldo BL, Proctor WR. Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors. Science 269:977-981, 1995.
64. Kaila K, Lamsa K, Smirnov S, Taira T, Voipio J. Long-lasting GABA-mediated depolarization evoked by high-frequency stimulation in pyramidal neurons of rat hippocampal slice is attributable to a network-driven, bicarbonate-dependent K+ transient. J Neurosci 17:7662-7672, 1997.
65. Smirnov S, Paalasmaa P, Uusisaari M, Voipio J, Kaila K. Pharmacological isolation of the synaptic and nonsynaptic components of the GABA-mediated biphasic response in rat CA1 hippocampal pyramidal cells. J Neurosci 19:9252-9260, 1999.
66. Louvel J, Papatheodoropoulos C, Siniscalchi A, Kurciewicz I, Pumain R, Devaux B y col. GABA-Mediated synchronization in the human cortex: elevations in extracellular potassium and presynaptic mechanisms. Neuroscience 105:803-813, 2001.
67. Capogna M, Gahwiler BH, Thompson SM. Mechanism of m-opioid receptor-mediated presynaptic inhibition in the rat hippocampus in vitro. J Physiol (Lond) 470:539-558, 1993.
68. Marco P, Sola RG, Pulido P, Alijarde MT, Sanchez A, Ramon y Cajal S, DeFelipe J. Inhibitory neurons in the human epileptogenic temporal neocortex. An immunocytochemical study. Brain 119:1327-47, 1996.
69. Ferrer I, Oliver B, Russi A, Casas R, Rivera R. Parvalbumin and calbindin-D28k immunocytochemistry in human neocortical epileptic foci. J Neurol Sci 123(1-2):18-25, 1994.
70. Ying Z, Babb TL, Comair YG, Bingaman W, Bushey M, Touhalisky K. Induced expression of NMDAR2 proteins and differential expression of NMDAR1 splice variants in dysplastic neurons of human epileptic neocortex. J Neuropathol Exp Neurol 57(1):47-62, 1998.
71. Gonzalez-Albo MC, Gomez-Utrero E, Sanchez A, Sola RG, DeFelipe J. Changes in the colocalization of glutamate ionotropic receptor subunits in the human epileptic temporal lobe cortex. Exp Brain Res 138(3):398-402, 2001.
72. Kortenbruck G, Berger E, Speckmann EJ, Musshoff U. RNA editing at the Q/R site for the glutamate receptor subunits GLUR2, GLUR5, and GLUR6 in hippocampus and temporal cortex from epileptic patients. Neurobiol Dis 8(3):459-68, 2001.
73. Arion D, Sabatini M, Unger T, Pastor J, Alonso-Nanclares L, Ballesteros Yáñez I y cols. Correlation of transcriptome profile with electrical activity in the neocórtex of temporal lobe epilepsy. Neurobiology of Disease 22:374 - 387, 2006.
74. Babb TL, Brown WJ. Pathological findings in epilepsy. En: Engel J Jr, ed. Surgical treatment of the epilepsies. New York, Raven Press, pp. 511-540, 1987.
75. Du F, Whetsell WO, Abou-Khalil B, Blumenkopf B, Lothman EW, Schwartz R. Preferential neuronal loss in layer III of the entorhinal cortex in patients with temporal lobe epilepsy. Epilepsy Res 16:223-233, 1993.
76. Lanerolle NC, Brines ML, Kim JH, Williamson A, Philips MF, Spencer DD. Neurochemical remodeling of the hippocampus in human temporal lobe epilepsy. Epilepsy Res Suppl 9:205-220, 1992.
77. Arellano JI, Muñoz A, Ballesteros-Yanez I, Sola RG, DeFelipe J. Histopathology and reorganization of chandelier cells in the human epileptic sclerotic hippocampus. Brain 127:45-64, 2004.
78. Sutula T, Cascino G, Cavazos J, Parada I, Ramirez L. Mossy fiber synaptic reorganization in the epileptic human temporal lobe. Ann Neurol 26:321-330, 1989.
79. Isokawa M. Decrement of GABAA receptor-mediated inhibitory postsynaptic currents in dentate granule cells in epileptic hippocampus. J Neurophysiol 75:1901-1908, 1996.
80. Houser CR, Miyashiro JE, Swartz BE, Walsh GO, Rich JR, Delgado-Escueta AV. Altered patterns of dynorphin immunoreactivity suggest mossy fiber oreorganization in human hippocampal epilepsy. J Neurosci 10:267-282, 1990.
81. Isokawa, M. Remodeling dendritic spines of dentate granule cells in temporal lobe epilepsy patients and the rat pilocarpine model. Epilepsia 41:S14-S17, 2000.
82. De Felipe J. Chandelier cells and epilepsy. Brain 122:1807-1822, 1999.
83. Isokawa M, Avanzini G, Finch DM, Babb TL, Levesque MF. Physiologic properties of human dentate granule cells in slices prepared from epileptic patients. Epilepsy Res 9:242-250, 1991.
84. Vreugdenhil M, Hoogland G, Van Veelen CW, Wadman WJ. Persistent sodium current in subicular neurons isolated from patients with temporal lobe epilepsy. Eur J Neurosci 19:2769-2778, 2004.
85. Wozny C, Kivi A, Lehmann TN, Dehnicke C, Heinemann U, Behr J. Comment on ''On the origin of interictal activity in human temporal lobe epilepsy in vitro''. Science 301:463, 2003.
86. Cohen I, Navarro V, Clemenceau S, Baulac M, Miles R. On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science 298:1418-1421, 2002.
87. Bender RA, Soleymani SV, Brewster AL, Nguyen ST, Beck H, Mathern GW y cols. Enhanced expression of a specific hyperpolarization-activated cyclic nucleotide-gated cation channel (HCN) in surviving dentate gyrus granule cells of human and experimental epileptic hippocampus. J Neurosci 23:6826-6836, 2003.
88. Isokawa M, Levesque MF, Babb TL, Engel Jr J. Single mossy fiber axonal systems of human dentate granule cells studied in hippocampal slices from patients with temporal lobe epilepsy. J Neurosci 13:1511-1522, 1993.
89. Mathern GW, Pretorius JK, Kornblum HI, Mendoza D, Lozada A, Leite JP, Chimelli L, Born DE, Fried I, Sakamoto AC, Assirati JA, Peacock WJ, Ojemann GA, Adelson PD. Altered hippocampal kainate-receptor mRNA levels in temporal lobe epilepsy patients. Neurobiol Dis 5(3):151-76, 1998.
90. Mathern GW, Pretorius JK, Kornblum HI, Mendoza D, Lozada A, Leite JP, Chimelli LM, Fried I, Sakamoto AC, Assirati JA, Levesque MF, Adelson PD, Peacock WJ. Human hippocampal AMPA and NMDA mRNA levels in temporal lobe epilepsy patients. Brain 120(Pt.11):1937-59, 1997.
91. Mathern GW, Pretorius JK, Mendoza D, Leite JP, Chimelli L, Born DE, Fried I, Assirati JA, Ojemann GA, Adelson PD, Cahan LD, Kornblum HI. Hippocampal N-methyl-D-aspartate receptor subunit mRNA levels in temporal lobe epilepsy patients. Ann Neurol 46(3):343-58, 1999.
92. Dietrich D, Kral T, Clusmann H, Friedl M, Schramm J. Reduced function of L-AP4-sensitive metabotropic glutamate receptors in human epileptic sclerotic hippocampus. Eur J Neurosci 11:1109-13, 1999.
93. Olsen RW, Bureau M, Houser CR, Delgado-Escueta AV, Richards JG, Möhler H. GABA/benzodiazepine receptors in human focal epilepsy. Epilepsy Res (Suppl.)8:383-891, 1992.
94. Olsen RW, Avoli M. GABA and epileptogenesis. Epilepsia 38:399-407, 1997.
95. Wolf HK, Spänle M, Müller MB, Elger CE, Schramm J, Wiestler OD. Hippocampal loss of the GABAA receptor alpha 1 subunit in patients with chronic pharmacoresistant epilepsies. Acta Neuropathol 88:313-319, 1994.
96. Loup F, Wieser HG, Yonekawa Y, Aguzzi A, Fritschy JM. Selective alterations in GABAA receptor subtypes in human temporal lobe epilepsy. J Neurosci 20(14):5401-19, 2000.
97. Muñoz A, Méndez P, Álvarez-Leefmans FJ, De Felipe J. Expression of cation-chloride cotransporters NKCC and KCC2 in normal and epileptic hippocampus of humans. FENS abstract 2, A197.2.385, 2004.
98. Vale C, Sanes DH. Afferent regulation of inhibitory synaptic transmission in the developing auditory midbrain. J Neurosci 20:1912-1921, 2000.
99. Rivera C, Voipio J, Thomas-Crusells J, Li H, Emri Z, Sipila S y col. Mechanism of activity dependent down regulation of the neuron-specific K-Cl cotransporter KCC2. J Neurosci 24:4683-4691, 2004.
100. Furtinger S, Pirker S, Czech T, Baumgartner C, Ransmayr G, Sperk G. Plasticity of Y1 and Y2 receptors and neuropeptide Y fibers in patients with temporal lobe epilepsy. J Neurosci 21:5804-5812, 2001.
101. Baraban SC, Tallent MK. Interneuron diversity series: interneuronal neuropeptides-endogenous regulators of neuronal excitability. TINS 27:135-142, 2004.
102. Aronica E, Gorter JA, Jansen GH, Leenstra S, Yankaya B, Troost D. Expression of connexin 43 and connexin 32 gap-junction proteins in epilepsy-associated brain tumors and in the perilesional epileptic cortex. Acta Neuropathol 101:449-459, 2001.
103. Fonseca CG, Green CR, Nicholson LF. Upregulation in astrocytic connexin 43 gap junction levels may exacerbate generalized seizures in mesial temporal lobe epilepsy. Brain Res 929:105-116, 2002.
104. Ivens S, Kaufer D, Flores LP, Bechmann I, Zumsteg D, Tomkins O y cols. TGF-B receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain 130:535-547, 2007.
105. Eid T, Williamson A, Lee TS, Petroff OA, De Lanerolle NC. Glutamate and astrocytes-Key players in human mesial temporal lobe epilepsy? Epilepsia 49(Suppl.2):42-52, 2008.
106. Pacia SV, Ebersole JS. Intracranial EEG in temporal lobe epilepsy. J Clin Neurophysiol 16(5):399-407, 1999.
107. Bragin A, Wilson CL, Straba RJ, Reddick M, Fried I, Engel Jr J. Interictal high-frequency oscillations (80-500 Hz) in the human epileptic brain: entorhinal cortex. Ann Neurol 52:407-415, 2002.
108. Pastor J, Sola RG. Utility of foramen ovale electrodes in temporal lobe epilepsy surgery. Gobal Research Network, en prensa.
109. Pastor J, Menéndez de la Prida L, Hernando V, Sola RG. Voltage sources in mesial temporal lobe epilepsy recorded with foramen ovale electrodes. Clinical Neurophysiol 117(12):2604-2614, 2006.
110. Ortega GJ, Menéndez de la Prida L, Sola RG, Pastor J. Synchronization clusters of interictal activity in the lateral temporal cortex of epileptic patients: intracranial analysis. Epilepsia 49(2):269-280, 2008.
111. Ortega GJ, Sola RG, Pastor J. Global interaction analysis in epileptic ECoG data. Proceedings of American Institute of Physics 913:203-204, 2007.

 
 
 
 
 
 
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
ua31618