siiclogo2c.gif (4671 bytes)
EVALUAN EL EFECTO DE LAS ESTATINAS SOBRE LA PRODUCCION DE Β-AMILOIDE
(especial para SIIC © Derechos reservados)
hoglund9.jpg
Autor:
Kina Höglund
Columnista Experto de SIIC

Institución:
Göteborg University

Artículos publicados por Kina Höglund 
Coautor Kaj Blennow* 
MD, PhD, Göteborg University, Mölndal, Suecia*


Recepción del artículo: 5 de septiembre, 2006
Aprobación: 13 de septiembre, 2006
Conclusión breve
A pesar de su notable efecto sobre el metabolismo del colesterol, el tratamiento con estatinas, dentro de su intervalo terapéutico, no parece asociarse con modificación significativa de la concentración de β-amiloide en personas con hipercolesterolemia o enfermedad de Alzheimer. En consecuencia, en dosis clínicamente útiles, las estatinas podrían carecer de repercusión sobre la producción o segregación de β-amiloide, según propone la estrategia actualmente debatida para detener la progresión de la enfermedad de Alzheimer. Otros efectos de las estatinas pueden ser responsables de su acción protectora contra la demencia.

Resumen

Hasta la fecha, se formularon numerosas hipótesis en un intento por establecer la causa de la enfermedad de Alzheimer (EA), la forma más frecuente de demencia. Aquella que considera el papel del colesterol, basada principalmente en estudios en cultivos celulares y en animales, afirma que los niveles aumentados de colesterol inducen la vía amiloidogénica durante el metabolismo de la proteína precursora de amiloide (PPA) y, en consecuencia, promueven la producción del péptido beta amiloide (βA), principal constituyente de las placas seniles. Representa una teoría ampliamente aceptada que la adición de βA en las placas es un evento inicial en la EA, el cual resulta en neurodegeneración. La presente revisión se centra en la hipótesis del colesterol y su aplicación a los seres humanos. Se revisa y discute el papel del tratamiento para reducir los niveles de colesterol con estatinas.

Palabras clave
enfermedad de Alzheimer, colesterol, estatinas, ß-amiloide, líquido cefalorraquídeo

Clasificación en siicsalud
Artículos originales> Expertos del Mundo>
página www.siicsalud.com/des/expertos.php/85204

Especialidades
Principal: Bioquímica
Relacionadas: Anatomía PatológicaCardiologíaFarmacologíaGeriatríaMedicina FarmacéuticaMedicina InternaNeurologíaToxicología

Enviar correspondencia a:
Kina Höglund, Department of Neuroscience and Physiology, Section of Psychiatry and Neurochemistry, Neurochemistrylab, Göteborg University, S-431080, Mölndal, Suecia


STATIN-INDUCED REDUCTION OF ß-AMYLOID PRODUCTION IN ALZHEIMER'S DISEASE

Abstract
To date a number of hypotheses have been postulated trying to state the cause of Alzheimer's disease (AD), the most common form of dementia. The cholesterol hypothesis, based primarily on cell- and animal studies, states that increased levels of cholesterol induces the amyloidogenic pathway of the processing of the amyloid precursor protein (APP), thereby promoting production of the ß-amyloid peptide(Aß). The Aß peptide is the major constituent of senile plaques, which together with atrophy and neurofibrillary tangles is the main neuropathological finding in AD. It is a widely accepted theory that aggregation of Aß into plaques is a initial event in AD, driving neurodegeneration. This review focuses on the cholesterol hypothesis and its implementation on human beings. The role of cholesterol lowering treatment using statins is reviewed and discussed.


Key words
cholesterol, statins, B-amyloid, CSF, Alzheimer's disease


EVALUAN EL EFECTO DE LAS ESTATINAS SOBRE LA PRODUCCION DE Β-AMILOIDE

(especial para SIIC © Derechos reservados)
Artículo completo
A pesar de su notable efecto sobre el metabolismo del colesterol, el tratamiento con estatinas, dentro de su intervalo terapéutico, no parece asociarse con modificación significativa de la concentración de β-amiloide en personas con hipercolesterolemia o enfermedad de Alzheimer. En consecuencia, en dosis clínicamente útiles, las estatinas podrían carecer de repercusión sobre la producción o segregación de β-amiloide, según propone la estrategia actualmente debatida para detener la progresión de la enfermedad de Alzheimer. Otros efectos de las estatinas pueden ser responsables de su acción protectora contra la demencia.
Bibliografía del artículo
1. Locatelli S, Lutjohann D, Schmidt HH, et al. Reduction of plasma 24S-hydroxycholesterol (cerebrosterol) levels using high-dosage simvastatin in patients with hypercholesterolemia: evidence that simvastatin affects cholesterol metabolism in the human brain. Arch Neurol 2002; 59(2):213-6.
2. Thelen KM, Rentsch KM, Gütteck U, et al. Brain cholesterol synthesis in mice is affected by high dose of simvastatin but not of pravastatin. J Pharmacol Exp Ther 2005.
3. Vega GL, Weiner MF, Lipton AM, et al. Reduction in levels of 24S-hydroxycholesterol by statin treatment in patients with Alzheimer disease. Arch Neurol 2003; 60(4):510-5.
4. Iwatsubo T, Odaka A, Suzuki N, et al. Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited species is A beta 42(43). Neuron 1994; 13(1):45-53.
5. Namba Y, Tomonaga M, Kawasaki H, Otomo E, Ikeda K. Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer's disease and kuru plaque amyloid in Creutzfeldt-Jakob disease. Brain Res 1991; 541(1):163-6.
6. Abraham CR, Selkoe DJ, Potter H. Immunochemical identification of the serine protease inhibitor alpha 1-antichymotrypsin in the brain amyloid deposits of Alzheimer's disease. Cell 1988; 52(4):487-501.
7. Afagh A, Cummings BJ, Cribbs DH, Cotman CW, Tenner AJ. Localization and cell association of C1q in Alzheimer's disease brain. Exp Neurol 1996; 138(1):22-32.
8. Mori T, Paris D, Town T, et al. Cholesterol accumulates in senile plaques of Alzheimer disease patients and in transgenic APP(SW) mice. J Neuropathol Exp Neurol 2001; 60(8):778-85.
9. Strozyk D, Blennow K, White LR, Launer LJ. CSF Abeta 42 levels correlate with amyloid-neuropathology in a population-based autopsy study. Neurology 2003; 60(4):652-6.
10. Fagan AM, Mintun MA, Mach RH, et al. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol 2006; 59(3):512-9.
11. Blennow K. Cerebrospinal fluid protein biomarkers for Alzheimer's disease. NeuroRx 2004; 1(2):213-25.
12. Jorm AF, Korten AE, Henderson AS. The prevalence of dementia: a quantitative integration of the literature. Acta Psychiatr Scand 1987; 76(5):465-79.
13. Breteler MM, Claus JJ, Van Duijn CM, Launer LJ, Hofman A. Epidemiology of Alzheimer's disease. Epidemiol Rev 1992; 14:59-82.
14. Evans DA, Funkenstein HH, Albert MS, et al. Prevalence of Alzheimer's disease in a community population of older persons. Higher than previously reported. Jama 1989; 262(18):2551-6.
15. Corder EH, Saunders AM, Strittmatter WJ, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 1993; 261(5123):921-3.
16. Poirier J, Davignon J, Bouthillier D, et al. Apolipoprotein E polymorphism and Alzheimer's disease. Lancet 1993; 342(8873):697-9.
17. Skoog I. Elevated blood pressure and Alzheimer's disease. Hosp Pract (Off Ed) 1997; 32(4):13-4, 16, 21.
18. Gustafson D, Rothenberg E, Blennow K, Steen B, Skoog I. An 18-year follow-up of overweight and risk of Alzheimer disease. Arch Intern Med 2003; 163(13):1524-8.
19. Fleminger S, Oliver DL, Lovestone S, Rabe-Hesketh S, Giora A. Head injury as a risk factor for Alzheimer's disease: the evidence 10 years on; a partial replication. J Neurol Neurosurg Psychiatry 2003; 74(7):857-62.
20. Green RC, Cupples LA, Kurz A, et al. Depression as a risk factor for Alzheimer disease: the MIRAGE Study. Arch Neurol 2003; 60(5):753-9.
21. Kivipelto M, Helkala EL, Laakso MP, et al. Midlife vascular risk factors and Alzheimer's disease in later life: longitudinal, population based study. BMJ 2001; 322(7300):1447-51.
22. Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer's disease. Trends Pharmacol Sci 1991; 12(10):383-8.
23. McLean CA, Cherny RA, Fraser FW, et al. Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. Ann Neurol 1999; 46(6):860-6.
24. Naslund J, Haroutunian V, Mohs R, et al. Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. JAMA 2000; 283(12):1571-7.
25. Wang J, Dickson DW, Trojanowski JQ, Lee VM. The levels of soluble versus insoluble brain Abeta distinguish Alzheimer's disease from normal and pathologic aging. Exp Neurol 1999; 158(2):328-37.
26. Braak E, Griffing K, Arai K, et al. Neuropathology of Alzheimer's disease: what is new since A. Alzheimer? Eur Arch Psychiatry Clin Neurosci 1999; 249 Suppl 3:14-22.
27. Strittmatter WJ, Saunders AM, Schmechel D, et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA 1993; 90(5):1977-81.
28. Notkola IL, Sulkava R, Pekkanen J, et al. Serum total cholesterol, apolipoprotein E epsilon 4 allele, and Alzheimer's disease. Neuroepidemiology 1998; 17(1):14-20.
29. Sing CF, Davignon J. Role of the apolipoprotein E polymorphism in determining normal plasma lipid and lipoprotein variation. Am J Hum Genet 1985; 37(2):268-85.
30. Eto M, Watanabe K, Chonan N, Ishii K. Familial hypercholesterolemia and apolipoprotein E4. Atherosclerosis 1988; 72(2-3):123-8.
31. Utermann G, Langenbeck U, Beisiegel U, Weber W. Genetics of the apolipoprotein E system in man. Am J Hum Genet 1980; 32(3):339-47.
32. Strittmatter WJ, Roses AD. Apolipoprotein E and Alzheimer disease. Proc Natl Acad Sci USA 1995; 92(11):4725-7.
33. Poirier J. Apolipoprotein E and Alzheimer's disease. A role in amyloid catabolism. Ann NY Acad Sci 2000; 924:81-90.
34. Sparks DL, Hunsaker JC, 3rd, Scheff SW, et al. Cortical senile plaques in coronary artery disease, aging and Alzheimer's disease. Neurobiol Aging 1990; 11(6):601-7.
35. Sparks DL, Scheff SW, Hunsaker JC, 3rd, et al. Induction of Alzheimer-like beta-amyloid immunoreactivity in the brains of rabbits with dietary cholesterol. Exp Neurol 1994; 126(1):88-94.
36. Fassbender K, Simons M, Bergmann C, et al. Simvastatin strongly reduces levels of Alzheimer's disease beta - amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proc Natl Acad Sci USA 2001; 98(10):5856-61.
37. Howland DS, Trusko SP, Savage MJ, et al. Modulation of secreted beta-amyloid precursor protein and amyloid beta- peptide in brain by cholesterol. J Biol Chem 1998; 273(26):16576-82.
38. Refolo LM, Pappolla MA, LaFrancois J, et al. A cholesterol-lowering drug reduces beta-amyloid pathology in a transgenic mouse model of Alzheimer's disease. Neurobiol Dis 2001; 8(5):890-9.
39. Refolo LM, Pappolla MA, Malester B, et al. Hypercholesterolemia accelerates the Alzheimer's amyloid pathology in a transgenic mouse model. Neurobiol Dis 2000; 7(4):321-31.
40. Sparks DL, Kuo YM, Roher A, Martin T, Lukas RJ. Alterations of Alzheimer's disease in the cholesterol-fed rabbit, including vascular inflammation. Preliminary observations. Ann NY Acad Sci 2000; 903:335-44.
41. George AJ, Holsinger RM, McLean CA, et al. APP intracellular domain is increased and soluble Abeta is reduced with diet-induced hypercholesterolemia in a transgenic mouse model of Alzheimer disease. Neurobiol Dis 2004; 16(1):124-32.
42. Petanceska SS, DeRosa S, Olm V, et al. Statin therapy for Alzheimer's disease: will it work? J Mol Neurosci 2002; 19(1-2):155-61.
43. Park IH, Hwang EM, Hong HS, et al. Lovastatin enhances Abeta production and senile plaque deposition in female Tg2576 mice. Neurobiol Aging 2003; 24(5):637-43.
44. Bodovitz S, Klein WL. Cholesterol modulates alpha-secretase cleavage of amyloid precursor protein. J Biol Chem 1996; 271(8):4436-40.
45. Buxbaum JD, Geoghagen NS, Friedhoff LT. Cholesterol depletion with physiological concentrations of a statin decreases the formation of the Alzheimer amyloid Abeta peptide. J Alzheimer's Dis 2001; 3(2):221-229.
46. Frears ER, Stephens DJ, Walters CE, Davies H, Austen BM. The role of cholesterol in the biosynthesis of beta-amyloid. Neuroreport 1999; 10(8):1699-705.
47. Galbete JL, Martin TR, Peressini E, et al. Cholesterol decreases secretion of the secreted form of amyloid precursor protein by interfering with glycosylation in the protein secretory pathway. Biochem J 2000; 348 Pt 2:307-13.
48. Kojro E, Gimpl G, Lammich S, Marz W, Fahrenholz F. Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the alpha -secretase ADAM 10. Proc Natl Acad Sci USA 2001; 98(10):5815-20.
49. Racchi M, Baetta R, Salvietti N, et al. Secretory processing of amyloid precursor protein is inhibited by increase in cellular cholesterol content. Biochem J 1997; 322(Pt 3):893-8.
50. Simons M, Keller P, De Strooper B, et al. Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proc Natl Acad Sci USA 1998; 95(11):6460-4.
51. Hartmann T, Bieger SC, Bruhl B, et al. Distinct sites of intracellular production for Alzheimer's disease A beta40/42 amyloid peptides. Nat Med 1997; 3(9):1016-20.
52. Kaether C, Haass C. A lipid boundary separates APP and secretases and limits amyloid beta-peptide generation. J Cell Biol 2004; 167(5):809-12.
53. Abad-Rodriguez J, Ledesma MD, Craessaerts K, et al. Neuronal membrane cholesterol loss enhances amyloid peptide generation. J Cell Biol 2004; 167(5):953-60.
54. Kivipelto M, Helkala EL, Hanninen T, et al. Midlife vascular risk factors and late-life mild cognitive impairment: A population-based study. Neurology 2001; 56(12):1683-9.
55. Pappolla MA, Bryant-Thomas TK, Herbert D, et al. Mild hypercholesterolemia is an early risk factor for the development of Alzheimer amyloid pathology. Neurology 2003; 61(2):199-205.
56. Jick H, Zornberg GL, Jick SS, Seshadri S, Drachman DA. Statins and the risk of dementia. Lancet 2000; 356(9242):1627-31.
57. Rockwood K, Kirkland S, Hogan DB, et al. Use of lipid-lowering agents, indication bias, and the risk of dementia in community-dwelling elderly people. Arch Neurol 2002; 59(2):223-7.
58. Zamrini E, McGwin G, Roseman JM. Association between statin use and Alzheimer's disease. Neuroepidemiology 2004; 23(1-2):94-8.
59. Rodriguez EG, Dodge HH, Birzescu MA, Stoehr GP, Ganguli M. Use of lipid-lowering drugs in older adults with and without dementia: a community-based epidemiological study. J Am Geriatr Soc 2002; 50(11):1852-6.
60. Yaffe K, Barrett-Connor E, Lin F, Grady D. Serum lipoprotein levels, statin use, and cognitive function in older women. Arch Neurol 2002; 59(3):378-84.
61. Dufouil C, Richard F, Fievet N, et al. APOE genotype, cholesterol level, lipid-lowering treatment, and dementia: the Three-City Study. Neurology 2005; 64(9):1531-8.
62. Hajjar I, Schumpert J, Hirth V, Wieland D, Eleazer GP. The impact of the use of statins on the prevalence of dementia and the progression of cognitive impairment. J Gerontol A Biol Sci Med Sci 2002; 57(7):M414-8.
63. Wolozin B, Kellman W, Ruosseau P, Celesia GG, Siegel G. Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3- methyglutaryl coenzyme A reductase inhibitors. Arch Neurol 2000; 57(10):1439-43.
64. Evans RM, Emsley CL, Gao S, et al. Serum cholesterol, APOE genotype, and the risk of Alzheimer's disease: a population-based study of African Americans. Neurology 2000; 54(1):240-2.
65. Kivipelto M, Helkala EL, Laakso MP, et al. Apolipoprotein E epsilon4 allele, elevated midlife total cholesterol level, and high midlife systolic blood pressure are independent risk factors for late-life Alzheimer disease. Ann Intern Med 2002; 137(3):149-55.
66. Romas SN, Tang MX, Berglund L, Mayeux R. APOE genotype, plasma lipids, lipoproteins, and AD in community elderly. Neurology 1999; 53(3):517-21.
67. Tan ZS, Seshadri S, Beiser A, et al. Plasma total cholesterol level as a risk factor for Alzheimer disease: the Framingham Study. Arch Intern Med 2003; 163(9):1053-7.
68. Collins R, Armitage J, Parish S, Sleight P, Peto R. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 2002; 360(9326):7-22.
69. Engelhart MJ, Geerlings MI, Ruitenberg A, et al. Diet and risk of dementia: Does fat matter? The Rotterdam Study. Neurology 2002; 59(12):1915-21.
70. Shepherd J, Blauw GJ, Murphy MB, et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet 2002; 360(9346):1623-30.
71. Fassbender K, Stroick M, Bertsch T, et al. Effects of statins on human cerebral cholesterol metabolism and secretion of Alzheimer amyloid peptide. Neurology 2002; 59(8):1257-8.
72. Friedhoff LT, Cullen EI, Geoghagen NS, Buxbaum JD. Treatment with controlled-release lovastatin decreases serum concentrations of human beta-amyloid (A beta) peptide. Int J Neuropsychopharmacol 2001; 4(2):127-30.
73. Höglund K, Syversen S, Lewczuk P, et al. Statin treatment and a disease-specific pattern of beta-amyloid peptides in Alzheimer's disease. Exp Brain Res 2005; 164(2):205-14.
74. Höglund K, Thelen KM, Syversen S, et al. The effect of simvastatin treatment on the amyloid precursor protein and brain cholesterol metabolism in patients with Alzheimer's disease. Dement Geriatr Cogn Disord 2005; 19(5-6):256-65.
75. Höglund K, Wiklund O, Vanderstichele H, et al. Plasma levels of beta-amyloid(1-40), beta-amyloid(1-42), and total beta-amyloid remain unaffected in adult patients with hypercholesterolemia after treatment with statins. Arch Neurol 2004; 61(3):333-7.
76. Ishii K, Tokuda T, Matsushima T, et al. Pravastatin at 10 mg/day does not decrease plasma levels of either amyloid-beta (Abeta) 40 or Abeta 42 in humans. Neurosci Lett 2003; 350(3):161-4.
77. Simons M, Schwarzler F, Lütjohann D, et al. Treatment with simvastatin in normocholesterolemic patients with Alzheimer's disease: A 26-week randomized, placebo-controlled, double-blind trial. Ann Neurol 2002; 52(3):346-50.
78. Sjögren M, Gustafsson K, Syversen S, et al. Treatment with simvastatin in patients with Alzheimer's disease lowers both alpha- and beta-cleaved amyloid precursor protein. Dement Geriatr Cogn Disord 2003; 16(1):25-30.
79. Sparks DL, Petanceska S, Sabbagh M, et al. Cholesterol, copper and Abeta in controls, MCI, AD and the AD cholesterol-lowering treatment trial (ADCLT). Curr Alzheimer Res 2005; 2(5):527-39.
80. Sparks DL, Sabbagh MN, Connor DJ, et al. Atorvastatin therapy lowers circulating cholesterol but not free radical activity in advance of identifiable clinical benefit in the treatment of mild-to-moderate AD. Curr Alzheimer Res 2005; 2(3):343-53.
81. Tokuda T, Tamaoka A, Matsuno S, et al. Plasma levels of amyloid beta proteins did not differ between subjects taking statins and those not taking statins. Ann Neurol 2001; 49(4):546-7.
82. Dietschy JM, Turley SD. Cholesterol metabolism in the brain. Curr Opin Lipidol 2001; 12(2):105-12.
83. Kabara JJ. A critical review of brain cholesterol metabolism. Prog Brain Res 1973; 40(0):363-82.
84. Dietschy JM, Turley SD, Spady DK. Role of liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans. J Lipid Res 1993; 34(10):1637-59.
85. Lütjohann D, Breuer O, Ahlborg G, et al. Cholesterol homeostasis in human brain: evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation. Proc Natl Acad Sci USA 1996; 93(18):9799-804.
86. Björkhem I, Lütjohann D, Diczfalusy U, et al. Cholesterol homeostasis in human brain: turnover of 24S- hydroxycholesterol and evidence for a cerebral origin of most of this oxysterol in the circulation. J Lipid Res 1998; 39(8):1594-600.
87. Puglielli L, Konopka G, Pack-Chung E, et al. Acyl-coenzyme A: cholesterol acyltransferase modulates the generation of the amyloid beta-peptide. Nat Cell Biol 2001; 3(10):905-12.
88. Hutter-Paier B, Huttunen HJ, Puglielli L, et al. The ACAT inhibitor CP-113,818 markedly reduces amyloid pathology in a mouse model of Alzheimer's disease. Neuron 2004; 44(2):227-38.
89. Crameri A, Biondi E, Kuehnle K, et al. The role of seladin-1/DHCR24 in cholesterol biosynthesis, APP processing and Abeta generation in vivo. Embo J 2006; 25(2):432-43.
90. Masse I, Bordet R, Deplanque D, et al. Lipid lowering agents are associated with a slower cognitive decline in Alzheimer's disease. J Neurol Neurosurg Psychiatry 2005; 76(12):1624-9.
91. Cucchiara B, Kasner SE. Use of statins in CNS disorders. J Neurol Sci 2001; 187(1-2):81-9.
92. Delanty N, Vaughan CJ, Sheehy N. Statins and neuroprotection. Expert Opin Investig Drugs 2001; 10(10):1847-53.
93. Höglund K, Hviid Simonsen A, Davies H, McGuire J, Rüetschi U, Andreasen N, Wallin A, Blennow K. Protein changes in cerebrospinal fluid after statin treatment in Alzheimer's disease. Arch Neurology 2006; Submitted.

© Está  expresamente prohibida la redistribución y la redifusión de todo o parte de los  contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin  previo y expreso consentimiento de SIIC
anterior.gif (1015 bytes)

Bienvenidos a siicsalud
Acerca de SIIC Estructura de SIIC


Sociedad Iberoamericana de Información Científica (SIIC)
Mensajes a SIIC

Copyright siicsalud© 1997-2024, Sociedad Iberoamericana de Información Científica(SIIC)