INMUNOMODULACION DE LAS INFECCIONES MICOTICAS INVASIVAS: ¿AVANZARA DEL LABORATORIO A LA CAMA DEL PACIENTE





INMUNOMODULACION DE LAS INFECCIONES MICOTICAS INVASIVAS: ¿AVANZARA DEL LABORATORIO A LA CAMA DEL PACIENTE

(especial para SIIC © Derechos reservados)
La administración exógena de citoquinas y la transfusión de citoquinas obtenidas de fagocitos alogénicos parecen ser adyuvantes prometedores en la quimioterapia antifúngica de las infecciones micóticas invasivas.
roilides9.jpg Autor:
Emmanuel Roilides
Columnista Experto de SIIC

Institución:
Department of Pediatrics Hippokration Hospital


Artículos publicados por Emmanuel Roilides
Coautor
John Dotis* 
M.D., Research Fellow, 3rd Department of Paediatrics, Aristotle University*
Recepción del artículo
14 de Febrero, 2005
Aprobación
14 de Febrero, 2005
Primera edición
23 de Enero, 2006
Segunda edición, ampliada y corregida
7 de Junio, 2021

Resumen
Las infecciones micóticas invasivas (IMI) adquieren constantemente mayor importancia en el manejo de los pacientes inmunocomprometidos debido al aumento de la presencia de trastornos que provocan inmunosupresión y al surgimiento de hongos oportunistas que, con anterioridad, eran infrecuentes. Junto con la destrucción de los hongos mediante los agentes antimicóticos, la ayuda de la respuesta inmune a través de la reconstitución de las células efectoras, ya sea de su número o de su función con citoquinas o transfusiones de glóbulos blancos, o por la manipulación del desequilibrio de las citoquinas parece ser un adyuvante promisorio para la quimioterapia antifúngica. La evaluación de los beneficios de la prevención antimicótica y el tratamiento adyuvante con la combinación de factores de crecimiento hematopoyéticos o citoquinas y de agentes antimicóticos es una prioridad urgente para la investigación clínica. Sin embargo, es probable que los múltiples defectos inmunológicos que predisponen a las IMI, las diferencias biológicas entre los hongos patógenos y las respuestas variables a los inmunomoduladores compliquen el diseño de los estudios clínicos, y para que los resultados sean valederos será necesaria la inclusión de un gran número de casos. Un mejor conocimiento de la sinergia entre las citoquinas y los agentes antimicóticos puede aportar herramientas poderosas adicionales para el manejo de estas infecciones graves.

Palabras clave
Infecciones micóticas invasivas, pacientes inmunocomprometidos, tratamiento antifúngico adyuvante, inmunomodulación


Artículo completo

(castellano)
Extensión:  +/-11.43 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
Invasive fungal infections (IFIs) continuously acquire more importance in the management of immunocompromised patients especially because of the increased frequency of immunocompromising states and the emergence of previously rare opportunistic fungi. Together with destruction of fungi by antifungal agents, helping immune response by reconstitution of effector cells numerically and/or functionally with cytokines and/or white blood cell transfusions, or by manipulation of cytokine dysbalance appears to be promising adjunct to antifungal chemotherapy. Evaluation of the benefits of the antifungal prevention and adjunctive therapy combining hematopoietic growth factors/cytokines with antifungal agents is urgent priority for clinical research. However, the multiple immune defects that predispose to IFIs, the biological differences among pathogenic fungi, and the variable responses to immune modulators are likely to complicate the design of clinical studies, and large sample sizes will likely be required for valid results. A better understanding of the synergy between cytokines and antifungal agents may provide additional powerful tools for managing these serious infections.

Key words
Invasive fungal infections, immunocompromised patients, immunomodulation, adjunctive antifungal treatment


Full text
(english)
para suscriptores/ assinantes

Clasificación en siicsalud
Artículos originales > Expertos del Mundo >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Infectología, Inmunología
Relacionadas: Bioquímica, Diagnóstico por Laboratorio, Medicina Farmacéutica, Medicina Interna, Neumonología



Comprar este artículo
Extensión: 11.43 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Bibliografía del artículo
  1. Clark TA, Hajjeh RA. Recent trends in the epidemiology of invasive mycoses. Curr Opin Infect Dis 2002; 15:569-74.
  2. Pappas P. Immunotherapy for invasive fungal infections: from bench to bedside. Drug Resistance Updates 2004; 7:3-10.
  3. Lehrnbecher T, Fleischhack G, Hanisch M, et al. Circulating levels and promoter polymorphisms of interleukins-6 and 8 in pediatric cancer patients with fever and neutropenia. Haematologica 2004; 89:234-6.
  4. Casadevall A, Pirofski LA. Adjunctive immune therapy for fungal infections. Clin Infect Dis 2001; 33:1048-56.
  5. Lohmeyer J. Role of hemopoietic growth factors and cytokines in host defense against fungal infections. Mycoses 1997; 40 Suppl 2:37-9.
  6. Hubel K, Engert A. Clinical applications of granulocyte colony-stimulating factor: an update and summary. Ann Hematol 2003; 82:207-13.
  7. Roilides E, Uhlig K, Venzon D, et al. Prevention of corticosteroid-induced suppression of human polymorphonuclear leukocyte-induced damage of Aspergillus fumigatus hyphae by granulocyte colony-stimulating factor and interferon-g. Infect Immun 1993; 61:4870-7.
  8. Roilides E, Holmes A, Blake C, et al. Effects of granulocyte colony-stimulating factor and interferon-g on antifungal activity of human polymorphonuclear neutrophils against pseudohyphae of different medically important Candida species. J Leukoc Biol 1995; 57:651-6.
  9. Liles WC, Huang JE, Van Burik JA, et al. Granulocyte colony-stimulating factor administered in vivo augments neutrophil-mediated activity against opportunistic fungal pathogens. J Infect Dis 1997; 175:1012-5.
  10. Vecchiarelli A, Morani C, Baldelli F, et al. Beneficial effect of recombinant human granulocyte colony-forming factor on fungicidal activity of polymorphonuclear leukocytes from patients with AIDS. J Infect Dis 1995; 171:1448-54.
  11. Rodriguez-Adrian LJ, Grazziutti ML, Rex JH, et al. The potential role of cytokine therapy for fungal infections in patients with cancer: is recovery from neutropenia all that is needed Clin Infect Dis 1998; 26:1270-8.
  12. Hubel K, Dale DC, Liles WC. Therapeutic use of cytokines to modulate phagocyte function for the treatment of infectious diseases: current status of granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, macrophage colony-stimulating factor, and interferon-gamma. J Infect Dis 2002; 185:1490-501.
  13. Smith PD, Lamerson CL, Banks SM, et al. Granulocyte-macrophage colony-stimulating factor augments human monocyte fungicidal activity for Candida albicans. J Infect Dis 1990; 161:999-1005.
  14. Roilides E, Holmes A, Blake C, et al. Antifungal activity of elutriated human monocytes against Aspergillus fumigatus hyphae: Enhancement by granulocyte-macrophage colony-stimulating factor and interferon-g. J Infect Dis 1994; 170:894-9.
  15. Gil-Lamaignere C, Winn RM, Simitsopoulou M, et al. IFN-γ and GM-CSF augment the antifungal activity of human polymorphonuclear leukocytes against Scedosporium spp.: comparison with Aspergillus spp. Med Mycol (in press).
  16. Winn RM, Maloukou A, Gil-Lamaignere C, et al. Interferon-gamma and granulocyte-macrophage colony stimulating factor enhance hyphal damage of Aspergillus and Fusarium spp. by human neutrophils (J-134). In: 41st Interscience Conference Antimicrob Agents Chemother, Chicago IL., 2001. p. 366.
  17. Gil-Lamaignere C, Simitsopoulou M, Roilides E, et al. IFN-γ and GM-CSF enhance the activity of human polymorphonuclear leukocytes against medically important zygomycetes. J Infect Dis (in press).
  18. Gioulekas E, Goutzioulis M, Farmakis C, et al. Effects of macrophage colony-stimulating factor on antifungal activity of neonatal monocytes against Candida albicans. Biol Neonate 2001; 80:251-6.
  19. Roilides E, Lyman CA, Sein T, et al. Antifungal activity of splenic, liver and pulmonary macrophages against Candida albicans and effects of macrophage colony-stimulating factor. Med Mycol 2000; 38:161-8.
  20. Roilides E, Sein T, Holmes A, et al. Effects of macrophage colony-stimulating factor on antifungal activity of mononuclear phagocytes against Aspergillus fumigatus. J Infect Dis 1995; 172:1028-34.
  21. Roilides E, Farmaki E, Lyman CA. Immune reconstitution against human mycoses. In: Calderone R, Cihlar R, editors. Fungal pathogenesis: Principles and clinical applications. New York: Marcel Dekker Inc; 2001.p. 433-60.
  22. Romani L, Puccetti P, Bistoni F. Interleukin-12 in infectious diseases. Clin Microbiol Rev 1997; 10:611-36.
  23. Vazquez N, Walsh TJ, Friedman D, et al. Interleukin-15 augments superoxide production and microbicidal activity of human monocytes against Candida albicans. Infect Immun 1998; 66:145-50.
  24. Winn RM, Gil-Lamaignere C, Roilides E, et al. Selective effects of interleukin-15 on antifungal activity and interleukin-8 release by polymorphonuclear leukocytes in response to hyphae of Aspergillus spp. J Infect Dis 2003; 188:585-90.
  25. Winn RM, Gill-Lamaignere C, Roilides E, et al. Effects of interleukin-15 on antifungal responses of human polymorphonuclear leukocytes against Fusarium spp. and Scedosporium spp. Cytokine (in press).
  26. Roilides E, Kadiltsoglou I, Dimitriadou A, et al. Interleukin-4 suppresses antifungal activity of human mononuclear phagocytes against Candida albicans in association with decreased uptake of blastoconidia. FEMS Immunol Med Microbiol 1997; 19:169-80.
  27. Lilic D, Gravenor I, Robson N, et al. Deregulated production of protective cytokines in response to Candida albicans infection in patients with chronic mucocutaneous candidiasis. Infect Immun 2003; 71:5690-9.
  28. Altamura M, Casale D, Pepe M, et al. Immune responses to fungal infections and therapeutic implications. Curr Drug Targets Immune Endocr Metabol Disord 2001; 1:189-97.
  29. Roilides E, Dimitriadou A, Kadiltsoglou I, et al. IL-10 exerts suppressive and enhancing effects on antifungal activity of mononuclear phagocytes against Aspergillus fumigatus. J Immunol 1997; 158:322-9.
  30. Grazziutti ML, Savary CA, Ford A, et al. Aspergillus fumigatus conidia induce a Th1-type cytokine response. J Infect Dis 1997; 176:1579-83.
  31. Kullberg BJ, van der Meer JW, Meis JF, et al. Recombinant murine granulocyte colony-stimulating factor protects against acute disseminated Candida albicans infection in nonneutropenic mice. J Infect Dis 1998; 177:175-81.
  32. Polak-Wyss A. Protective effect of human granulocyte colony-stimulating factor on Candida infections in normal and immunosuppressed mice. Mycoses 1991; 34:109-18.
  33. Hamood M, Bluche PF, De Vroey C, et al. Effects of rhG-CSF on neutropenic mice infected with C. albicans: acceleration of recovery from neutropenia and potentiation of anti-Candida resistance. Mycoses 1994; 37:93-9.
  34. Uchida K, Yamamoto Y, Klein TW, et al. Granulocyte-colony stimulating factor facilitates the restoration of resistance to opportunistic fungi in leukopenic mice. J Med Vet Mycol 1992; 30:293-300.
  35. Polak-Wyss A. Protective effect of human granulocyte colony-stimulating factor on Cryptococcus and Aspergillus infections in normal and immunosuppressed mice. Mycoses 1991; 34:205-15.
  36. Graybill JR, Bocanegra R, Najvar LK, et al. Granulocyte colony-stimulating factor and azole antifungal therapy in murine aspergillosis: role of immune suppression. Antimicrob Agents Chemother 1998; 42:2467-73.
  37. Mayer P, Schutze C, Lam C, et al. Recombinant murine granulocyte-macrophage colony-stimulating factor augments neutrophil recovery and enhances resistance to infections in myelosuppressed mice. J Infect Dis 1991; 163:584-90.
  38. Cenci E, Bartocci A, Puccetti P, et al. Macrophage colony-stimulating factor in murine candidiasis: Serum and tissue levels during infection and protective effect of exogenous administration. Infect Immun 1991; 59:868-72.
  39. Vitt CR, Fidler JM, Ando D, et al. Antifungal activity of rhM-CSF in models of acute and chronic candidiasis in the rat. J Infect Dis 1994; 169:369-74.
  40. Kuhara T, Uchida K, Yamaguchi H. Therapeutic efficacy of human macrophage colony-stimulating factor, used alone and in combination with antifungal agents, in mice with systemic Candida albicans infection. Antimicrob Agents Chemother 2000; 44:19-23.
  41. Gonzalez CE, Lyman CA, Lee S, et al. Recombinant human macrophage colony-stimulating factor augments pulmonary host defences against Aspergillus fumigatus. Cytokine 2001; 15:87-95.
  42. Kullberg BJ, Van’t Wout JW, Hoogstraten C, et al. Recombinant interferon-g enhances resistance to acute disseminated Candida albicans infection in mice. J Infect Dis 1993; 168:436-43.
  43. Nagai H, Guo J, Choi H, et al. Interferon-gamma and tumor necrosis factor-alpha protect mice from invasive aspergillosis. J Infect Dis 1995; 172:1554-60.
  44. Schelenz S, Smith DA, Bancroft GJ. Cytokine and chemokine responses following pulmonary challenge with Aspergillus fumigatus: obligatory role of TNF-a and GM-CSF in neutrophil recruitment. Med Mycol 1999; 37:183-94.
  45. Mehrad B, Strieter RM, Standiford TJ. Role of TNF-alpha in pulmonary host defense in murine invasive aspergillosis. J Immunol 1999; 162:1633-40.
  46. Van’t Wout JW, Van der Meer JWM, Barza M, et al. Protection of neutropenic mice from lethal Candida albicans infection by recombinant interleukin 1. Eur J Immunol 1988; 18:1143-6.
  47. Tonnetti L, Spaccapelo R, Cenci E, et al. Interleukin-4 and -10 exacerbate candidiasis in mice. Eur J Immunol 1995; 25:1559-65.
  48. Cenci E, Mencacci A, Del Sero G, et al. Interleukin-4 causes susceptibility to invasive aspergillosis through suppression of protective type 1 responses. J Infect Dis 1999; 180:1957-68.
  49. Romani L, Puccetti P, Mencacci A, et al. Neutralization of IL-10 upregulates nitric oxide production and protects susceptible mice from challenge with Candida albicans. J Immunol 1994; 152:3514-21.
  50. Del Sero G, Mencacci A, Cenci E, et al. Antifungal type 1 responses are upregulated in IL-10-deficient mice. Microbes Infect 1999; 1:1169-80.
  51. Winkelstein JA, Marino MC, Johnston RB, et al. Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine (Baltimore) 2000; 79:155-69.
  52. American Society of Clinical Oncology recommendations for the use of hematopoietic colony-stimulating factors: Evidence-based, clinical practice guidlines. J Clin Oncol 1994; 12:2471-508.
  53. Boogaerts MA, Demuynck HM. Consensus on the clinical use of myeloid growth factors. Curr Opin Hematol 1996; 3:241-6.
  54. Crawford J, Ozer H, Stoller R, et al. Reduction by granulocyte colony-stimulating factor of fever and neutropenia induced by chemotherapy in patients with small-cell lung cancer. N Engl J Med 1991; 325:164-70.
  55. Rowe JM, Anderson JW, Mazza JJ, et al. A randomized placebo-controlled phase III study of granulocyte-macrophage colony-stimulating factor in adult patients (> 55 to 70 years) with acute myelogenous leukemia: a study by the Eastern Cooperative Oncology Group (E1490). Blood 1995; 86:457-62.
  56. Seipelt G. Clinical use of hematopoietic growth factors. Antibiot Chemother 2000; 50:94-105.
  57. Nemunaitis J, Buckner CD, Dorsey KS, et al. Retrospective analysis of infectious disease in patients who received recombinant human granulocyte-macrophage colony-stimulating factor versus patients not receiving a cytokine who underwent autologous bone marrow transplantation for treatment of lymphoid cancer. Am J Clin Oncol 1998; 21:341-6.
  58. Aviles A, Guzman R, Garcia EL, et al. Results of a randomized trial of granulocyte colony-stimulating factor in patients with infection and severe granulocytopenia. Anti-Cancer Agents 1996; 7:392-7.
  59. Ohno R, Miyawaki S, Hatake K, et al. Human urinary macrophage colony-stimulating factor reduces the incidence and duration of febrile neutropenia and shortens the period required to finish three courses of intensive consolidation therapy in acute myeloid leukemia: a double-blind controlled study. J Clin Oncol 1997; 15:2954-65.
  60. Peters BG, Adkins DR, Harrison B, et al. Antifungal effects of yeast-derived rhu-GM-CSF in patients receiving high-dose chemotherapy given with or without autologous stem cell transplantation: a retrospective analysis. Bone Marrow Transplant 1996; 18:93-102.
  61. Bodey GP, Anaissie E, Gutterman J, et al. Role of granulocyte-macrophage colony-stimulating factor as adjuvant therapy for fungal infection in patients with cancer. Clin Infect Dis 1993; 17:705-7.
  62. Nemunaitis J, Shannon-Dorcy K, Appelbaum FR, et al. Long-term follow-up of patients with invasive fungal disease who received adjunctive therapy with recombinant human macrophage colony-stimulating factor. Blood 1993; 82:1422-27.
  63. Ozer H, Armitage JO, Bennett CL, et al. 2000 update of recommendations for the use of hematopoietic colony-stimulating factors: evidence-based, clinical practice guidelines. American Society of Clinical Oncology Growth Factors Expert Panel. J Clin Oncol 2000; 18:3558-85.
  64. Anaissie EJ, Vartivarian S, Bodey GP, et al. Randomized comparison between antibiotics alone and antibiotics plus granulocyte-macrophage colony-stimulating factor (Escherichia coli-derived) in cancer patients with fever and neutropenia. Am J Med 1996; 100:17-23.
  65. Maher DW, Lieschke GJ, Green M, et al. Filgrastim in patients with chemotherapy-induced febrile neutropenia. A double-blind, placebo-controlled trial. Ann Intern Med 1994; 121:492-501.
  66. Giles FJ. Monocyte-macrophages, granulocyte-macrophage colony-stimulating factor, and prolonged survival among patients with acute myeloid leukemia and stem cell transplants. Clin Infect Dis 1998; 26:1282-9.
  67. Rowe JM. Treatment of acute myeloid leukemia with cytokines: effect on duration of neutropenia and response to infections. Clin Infect Dis 1998; 26:1290-4.
  68. Bohme A, Ruhnke M, Buchheidt D, et al. Treatment of fungal infections in hematology and oncology Guidelines of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO). Ann Hematol 2003; 82 Suppl 2:S133-S140.
  69. Beyer J, Schwella N, Zingsem J, et al. Hematopoietic rescue after high-dose chemotherapy using autologous peripheral-blood progenitor cells or bone marrow: A randomized comparison. J Clin Oncol 1995; 13:1328-35.
  70. Schmitz N, Linch DC, Dreger P, et al. Randomized trial of filgrastim-mobilized peripheral blood progenitor cell transplantation versus autologous bone marrow transplantation in lymphoma patients. Lancet 1996; 347:353-7.
  71. Kullberg BJ, Van de Woude K, Aoun M, et al. A double-blind, randomized, placebo-controlled phase II study of filgrastim (recombinant granulocyte colony-stimluating factor) in combination with fluconazole for treatment of invasive candidiasis and candidemia in nonneutropenic patients (J-100). In: Program and Abstracts of the 38th Interscience Conference Antimicrob Agents Chemother; 1998; San Diego CA; 1998.
  72. Mencacci A, Cenci E, Bacci A, et al. Host immune reactivity determines the efficacy of combination immunotherapy and antifungal chemotherapy in candidiasis. J Infect Dis 2000; 181:686-94.
  73. Grauer ME, Bokemeyer C, Bautsch W, et al. Successful treatment of a Trichosporon beigelii septicemia in a granulocytopenic patient with amphotericin B and granulocyte colony-stimulating factor. Infection 1994; 22:283-6.
  74. Hennequin C, Benkerrou M, Gaillard JL, et al. Role of granulocyte colony-stimulating factor in the management of infection with Fusarium oxysporum in a neutropenic child. Clin Infect Dis 1994; 18:490-1.
  75. Gonzalez CE, Couriel DR, Walsh TJ. Successful treatment of disseminated zygomycosis in a neutropenic patient with amphotericin B lipid complex and granulocyte colony-stimulating factor. Clin Infect Dis 1997; 24:192-6.
  76. Dornbusch HJ, Urban CE, Pinter H, et al. Treatment of invasive pulmonary aspergillosis in severely neutropenic children with malignant disorders using liposomal amphotericin B, granulocyte colony-stimulating factor and surgery: report of 5 cases. Pediatr Hematol Oncol 1995; 12:577-86.
  77. Spielberger RT, Falleroni MJ, Coene AJ, et al. Concomitant amphotericin B therapy, granulocyte transfusions, and GM-CSF administration for disseminated infection with Fusarium in a granulocytopenic patient. Clin Infect Dis 1993; 16:528-30.
  78. Boutati EI, Anaissie EJ. Fusarium, a significant emerging pathogen in patients with hematologic malignancy: ten years’ experience at a cancer center and implications for management. Blood 1997; 90:999-1008.
  79. Cohen-Abbo A, Edwards KM. Multifocal osteomyelitis caused by Paecilomyces varioti in a patient with chronic granulomatous disease. Infection 1995; 23:55-7.
  80. Pasic S, Abinun M, Pistignjat B, et al. Aspergillus osteomyelitis in chronic granulomatous disease: treatment with recombinant gamma-interferon and itraconazole. Pediatr Infect Dis J 1996; 15:833-4.
  81. Poynton CH, Barnes RA, Rees J. Interferon gamma and granulocyte-macrophage colony-stimulating factor for the treatment of hepatosplenic candidosis in patients with acute leukemia. Clin Infect Dis 1998; 26:239-40.
  82. Bensinger WI, Price TH, Dale DC, et al. The effects of daily recombinant human granulocyte colony-stimulating factor adminstration on normal granulocyte donors undergoing leukapheresis. Blood 1993; 81:1883-8.
  83. Van Burik JA, Weisdorf DJ. Is it time for a new look at granulocyte transfusions Transfusion 2002; 42:1394-5.
  84. Catalano L, Fontana R, Scarpato N, et al. Combined treatment with amphotericin-B and granulocyte transfusion from G-CSF-stimulated donors in an aplastic patient with invasive aspergillosis undergoing bone marrow transplantation. Haematologica 1997; 82:71-2.
  85. Di Mario A, Sica S, Salutari P, et al. Granulocyte colony-stimulating factor-primed leukocyte transfusions in candida tropicalis fungemia in neutropenic patients. Haematologica 1997; 82:362-3.
  86. Dignani MC, Freireich EJ, Andersson BS, et al. Treatment of neutropenia-related fungal infections with granulocyte colony-stimulating factor-elicited white blood cell transfusions: a pilot study. Leukemia 1997; 11:1621-30.
  87. Ozsahin H, Von Planta M, Muller I, et al. Successful treatment of invasive aspergillosis in chronic granulomatous disease by bone marrow transplantation, granulocyte colony-stimulating factor-mobilized granulocytes, and liposomal amphotericin-B. Blood 1998; 92:2719-24.
  88. Peters C, Minkov M, Matthes-Martin S, et al. Leucocyte transfusions from rhG-CSF or prednisolone stimulated donors for treatment of severe infections in immunocompromised neutropenic patients. Br J Haematol 1999; 106:689-96.
  89. Price TH, Bowden RA, Boeckh M, et al. Phase I/II trial of neutrophil transfusions from donors stimulated with G-CSF and dexamethasone for treatment of patients with infections in hematopoietic stem cell transplantation. Blood 2000; 95:3302-9.
  90. Rutella S, Pierelli L, Sica S, et al. Efficacy of granulocyte transfusions for neutropenia-related infections: retrospective analysis of predictive factors. Cytotherapy 2003; 5:19-30.
  91. Kerr J, Liakopolou E, Brown J, et al. The use of stimulated granulocyte transfusions to prevent recurrence of past severe infections after allogeneic stem cell transplantation. Br J Haematol 2003; 123:114-8.
  92. Briones M, Josephson CD, CD. H. Granulocyte transfusion: revisited. Curr Hematol Rep 2003; 2:522-7.
  93. Liang D. The role of colony-stimulating factors and granulocyte transfusion in treatment options for neutropenia in children with cancer. Paediatr Drugs 2003; 5: 673-84.
  94. Hubel K, Carter RA, Liles WC, et al. Granulocyte transfusion therapy for infections in candidates and recipients of HPC transplantation: a comparative analysis of feasibility and outcome for community donors versus related donors. Transfusion 2002; 42:1414-21.
  95. Cesaro S, Chinello P, De Silvestro G, et al. Granulocyte transfusions from G-CSF-stimulated donors for the treatment of severe infections in neutropenic pediatric patients with onco-hematological diseases. Support Care Cancer 2003; 11:101-6.
  96. Hubel K, Dale DC, Engert A, et al. Current status of granulocyte (neutrophil) transfusion therapy for infectious diseases. J Infect Dis 2001; 183:321-8.
  97. Roilides E, Lyman CA, Panagopoulou P, et al. Immunomodulation of invasive fungal infections. Infect Dis Clin N Am 2003; 17:193-219.
  98. Dale DC, Liles WC, Llewellyn C, et al. Neutrophil transfusions: kinetics and functions of neutrophils mobilized with granulocyte colony-stimulating factor and dexamethasone. Transfusion 1998; 38:713-21.
  99. Van Burik JA. Granulocyte transfusions as treatment or prophylaxis for fungal infections. Curr Opin Investig Drugs 2003; 4:921-5.

Título español
Resumen
 Palabras clave
 Bibliografía
 Artículo completo
(exclusivo a suscriptores)
 Autoevaluación
  Tema principal en SIIC Data Bases
 Especialidades

 English title
 Abstract
 Key words
Full text
(exclusivo a suscriptores)

Autor 
Artículos
Correspondencia

Patrocinio y reconocimiento
Imprimir esta página
 
 
 
 
 
 
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
ua31618