BASES NEUROBIOLOGICAS DE LA DEPRESION





BASES NEUROBIOLOGICAS DE LA DEPRESION

(especial para SIIC © Derechos reservados)
Revisión de los hallazgos científicos que avalan bases neurobiológicas de la depresión.
callado9.jpg Autor:
Luis Felipe Callado
Columnista Experto de SIIC

Institución:
Universidad del País Vasco


Artículos publicados por Luis Felipe Callado
Coautores
Jorge Emilio Ortega* Igor Horrillo** 
Doctor en Farmacia, Universidad del País Vasco, Lejona, España*
Licenciado en Farmacia, Universidad del País Vasco, Lejona, España**
Recepción del artículo
31 de Marzo, 2008
Aprobación
24 de Junio, 2008
Primera edición
24 de Octubre, 2008
Segunda edición, ampliada y corregida
7 de Junio, 2021

Resumen
La depresión es uno de los trastornos mentales que presenta una gran prevalencia, ya que afecta a cerca del 16% de la población general. Actualmente, la mayoría de los estudios coinciden en que este trastorno se produce por una interacción entre algún tipo de predisponente genético y diversos factores ambientales. Es por ello que la investigación de los mecanismos que median dicha interacción cobra vital importancia para conseguir avanzar en la comprensión de los mecanismos etiopatogénicos que originan el trastorno depresivo, y por ende para lograr herramientas más eficaces para su tratamiento y prevención. Durante las últimas décadas gran parte de los estudios sobre las bases neurobiológicas de la depresión evolucionaron a partir de dos grandes hipótesis, la teoría monoaminérgica y la teoría neurotrófica. El objeto del presente artículo es hacer una revisión de los hallazgos científicos que avalan ambas teorías.

Palabras clave
depresión, monoaminas, receptores, plasticidad neuronal, factores neurotróficos


Artículo completo

(castellano)
Extensión:  +/-5.45 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
Mood disorders are among the most prevalent forms of mental illness. Thus, up to 16% of the population is affected by depression. Actually, all the scientific studies agree that depression is mainly produced by an interaction between genetic and environmental causes. In this context, the study of this interaction is a key point in order to better understand the pathophysiology of depression and to improve its treatment and prevention.
During the last years, the efforts to try to understand the neurobiological basis of depression have mainly focus on two hypothesis: the monoamine hypothesis and the neurotrophic hypothesis. The aim of the present article is to review the scientific evidences that support both hypothesis.

Key words
depression, monoamines, receptors, neural plasticity, neurotrophic factors


Clasificación en siicsalud
Artículos originales > Expertos de Iberoamérica >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Neurología, Salud Mental
Relacionadas: Bioquímica, Educación Médica, Farmacología



Comprar este artículo
Extensión: 5.45 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Enviar correspondencia a:
Luis Felipe Callado, Universidad del País Vasco Departamento de Farmacología, 48940, Sarriena s/n, Lejona, España
Patrocinio y reconocimiento:
Durante la realización de este trabajo, los autores han sido financiados, en parte, por la Bizkaiko Foru Aldundia, el Gobierno Vasco (Programas ETORTEK y SAIOTEK), y el Ministerio de Sanidad y Consumo (Proyectos PI030498, PND2006/45 y CIBER de Salud Mental).
Bibliografía del artículo
1. Crane GE. Iproniazid (marsilid) phosphate, a therapeutic agent for mental disorders and debilitating diseases. Psychiatr Res Rep Am Psychiatr Assoc 135:142-52, 1957.
2. Schildkraut JJ. The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 122:509-22, 1965.
3. Praag HV. Depresion, suicide and serotonin metabolism in the brain. In: Post RM, Ballenger JC, editors. Neurobiology of mood disorders. Baltimore: Williams and Wilkins pp. 601-618, 1964.
4. Ballesteros J, Callado LF, Gutiérrez M. An independent meta-analysis using summary data for clinical response, remission, and discontinuation for any reason from the 6 pivotal phase III randomized clinical trials of duloxetine in major depressive disorder. J Clin Psychopharmacol 27:219-21, 2007.
5. Heninger GR, Delgado PL, Charney DS. The revised monoamine theory of depression: a modulatory role for monoamines, based on new findings from monoamine depletion experiments in humans. Pharmacopsychiatry 29:2-11, 1996.
6. Delgado PL, Charney DS, Price LH et al. Serotonin function and the mechanism of antidepressant action. Reversal of antidepressant-induced remission by rapid depletion of plasma tryptophan. Arch Gen Psychiatry 47:411-8, 1990.
7. Delgado PL, Miller HL, Salomon RM et al. Tryptophan-depletion challenge in depressed patients treated with desipramine or fluoxetine: implications for the role of serotonin in the mechanism of antidepressant action. Biol Psychiatry 46:212-20, 1999.
8. Miller HL, Delgado PL, Salomon RM et al. Clinical and biochemical effects of catecholamine depletion on antidepressant-induced remission of depression. Arch Gen Psychiatry 53:117-28, 1996.
9. Delgado PL, Miller HL, Salomon RM et al. Monoamines and the mechanism of antidepressant action: effects of catecholamine depletion on mood of patients treated with antidepressants. Psychopharmacol Bull 29:389-96, 1993.
10. Young SN, Smith SE, Pihl RO et al. Tryptophan depletion causes a rapid lowering of mood in normal males. Psychopharmacology (Berl) 87:173-7, 1985.
11. Smith SE, Pihl RO, Young SN et al. A test of possible cognitive and environmental influences on the mood lowering effect of tryptophan depletion in normal males. Psychopharmacology (Berl) 91:451-7, 1987.
12. Smith KA, Fairburn CG, Cowen PJ. Relapse of depression after rapid depletion of tryptophan. Lancet 349:915-9, 1997.
13. Moreno FA, Gelenberg AJ, Heninger GR et al. Tryptophan depletion and depressive vulnerability. Biol Psychiatry 46:498-505, 1999.
14. Benkelfat C, Ellenbogen MA, Dean P et al. Mood-lowering effect of tryptophan depletion. Enhanced susceptibility in young men at genetic risk for major affective disorders. Arch Gen Psychiatry 51:687-97, 1994.
15. Blier P, De Montigny C. Current advances and trends in the treatment of depression. Trends Pharmacol Sci 15:220-6, 1994.
16. Artigas F, Romero L, De Montigny C et al. Acceleration of the effect of selected antidepressant drugs in major depression by 5-HT1A antagonists. Trends Neurosci 19:378-83, 1996.
17. Mateo Y, Fernández Pastor B, Meana JJ. Acute and chronic effects of desipramine and clorgyline on alpha(2)-adrenoceptors regulating noradrenergic transmission in the rat brain: a dual-probe microdialysis study. Br J Pharmacol 133:1362-70, 2001.
18. Brunello N, Mendlewicz J, Kasper S et al. The role of noradrenaline and selective noradrenaline reuptake inhibition in depression. Eur Neuropsychopharmacol 12:461-75, 2002.
19. Hashimoto K, Shimizu E, Iyo M. Critical role of brain-derived neurotrophic factor in mood disorders. Brain Res Brain Res Rev 45:104-14, 2004.
20. Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biological Psychiatry 59:1116-1127, 2006.
21. Chen B, Dowlatshahi D, MacQueen GM et al. Increased hippocampal bdnf immunoreactivity in subjects treated with antidepressant medication. Biological Psychiatry 50:260-265, 2001.
22. Karege F, Vaudan G, Schwald M et al. Neurotrophin levels in postmortem brains of suicide victims and the effects of antemortem diagnosis and psychotropic drugs. Brain Res Mol Brain Res 136:29-37, 2005.
23. Piccinni A, Marazziti D, Catena M et al. Plasma and serum brain-derived neurotrophic factor (BDNF) in depressed patients during 1 year of antidepressant treatments. Journal of Affective Disorders Vol in press, corrected proof, 2007.
24. Castren E, Voikar V, Rantamaki T. Role of neurotrophic factors in depression. Curr Opin Pharmacol 7:18-21, 2007.
25. Tsankova NM, Berton O, Renthal W et al. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 9:519-25, 2006.
26. Berton O, Nestler EJ. New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci 7:137-51, 2006.
27. Sheline YI, Gado MH, Kraemer HC. Untreated depression and hippocampal volume loss. Am J Psychiatry 160:1516-8, 2003.
28. Bremner JD, Vythilingam M, Vermetten E et al. Effects of glucocorticoids on declarative memory function in major depression. Biol Psychiatry 55:811-5, 2004.
29. Drevets WC. Neuroimaging abnormalities in the amygdala in mood disorders. Ann NY Acad Sci 985:420-44, 2003.
30. Rajkowska G. Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol Psychiatry 48:766-77, 2000.
31. Rubin RT, Phillips JJ, Sadow TF et al. Adrenal gland volume in major depression. Increase during the depressive episode and decrease with successful treatment. Arch Gen Psychiatry 52:213-8, 1995.
32. Fries E, Hesse J, Hellhammer J et al. A new view on hypocortisolism. Psychoneuroendocrinology 30:1010-6, 2005.
33. Raadsheer FC, Hoogendijk WJ, Stam FC et al. Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients. Neuroendocrinology 60:436-44, 1994.
34. Arborelius L, Owens MJ, Plotsky PM et al. The role of corticotropin-releasing factor in depression and anxiety disorders. J Endocrinol 160:1-12, 1999.
35. Lopez JF, Chalmers DT, Little KY et al. A.E. Bennett Research Award. Regulation of serotonin1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: implications for the neurobiology of depression. Biol Psychiatry 43:547-73, 1998.

 
 
 
 
 
 
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
ua31618