Conceptos Categóricos

Crónicas de autores

Rosa Del Camp *

Autor invitado por SIIC

Ayuda a entender las infecciones crónicas

TIPIFICACIÓN MOLECULAR DE BACTERIAS

En un único paciente hemos analizados cepas iguales por PFGE y diferentes por MLST. Esto fue debido a una mutación en el gen mutL.

*Rosa Del Camp
describe para SIIC los aspectos relevantes de su trabajo
EMERGENCE OF A MUTL CAUSING MULTILOCUS SEQUENCE TYPING-PULSED-FIELD GEL ELECTROPHORESIS DISCREPANCY AMONG PSEUDOMONAS AERUGINOSA ISOLATES FROM A CYSTIC FIBROSIS PATIENT
Journal of Clinical Microbiology,
50(5):1777-1778 May, 2012

Esta revista, clasificada por SIIC Data Bases, integra el acervo bibliográfico
de la Biblioteca Biomédica (BB) SIIC.

Institución principal de la investigación
*Hospital Universitario Ramón y Cajal, Madrid, España
Imprimir nota
Referencias bibliográficas
1. Ban C, Yang W. 1998. Crystal structure and ATPase activity of MutL: implications for DNA repair and mutagenesis. Cell 95:541–552.
2. Ciofu O, Mandsberg LF, Bjarnsholt T, Wassermann T, Høiby N. 2010. Genetic adaptation of Pseudomonas aeruginosa during chronic lung infection of patients with cystic fibrosis: strong and weak mutators with heterogeneous genetic backgrounds emerge in mucA and/or lasR mutants. Microbiology 156:1108–1119.
3. Cramer N, et al. 2011. Microevolution of the major common Pseudomonas aeruginosa clones C and PA14 in cystic fibrosis lungs. Environ. Microbiol. 13:1690–1704.
4. Curran B, Jonas D, Grundmann H, Pitt T, Dowson CG. 2004. Development of a multilocus sequence typing scheme for the opportunistic pathogen Pseudomonas aeruginosa. J. Clin. Microbiol. 42:5644–5649.
5. Feliziani S., et al. 2010. Mucoidy, quorum sensing, mismatch repair and antibiotic resistance in Pseudomonas aeruginosa from cystic fibrosis chronic airways infections. PLoS One 5:e12669.
6. García-Castillo M, et al. 2011. Wide dispersion of ST175 clone despite a high genetic diversity of carbapenem-non-susceptible Pseudomonas aeruginosa clinical strains from 16 Spanish hospitals. J. Clin. Microbiol. 49:2905–2910.
7. Kidd TJ, Grimwood K, Ramsay KA, Rainey PB, Bell SC. 2011. Comparison of three molecular techniques for typing Pseudomonas aeruginosa isolates in sputum samples from patients with cystic fibrosis. J. Clin. Microbiol. 49:263–268.
8. Logan C, et al. 2012. Genetic relatedness of Pseudomonas aeruginosa isolates among a paediatric cystic fibrosis patient cohort in Ireland. J. Med. Microbiol. 61:64–70.
9. Maatallah M, et al. 2011. Population structure of Pseudomonas aeruginosa from five Mediterranean countries: evidence for frequent recombination and epidemic occurrence of CC235. PLoS One 6:e25617.
10. Oliver A, Baquero F, Blázquez J. 2002. The mismatch repair system (mutS, mutL and uvrD genes) in Pseudomonas aeruginosa: molecular characterization of naturally occurring mutants. Mol. Microbiol. 43:1641–1650.
11. van Mansfeld R, et al. 2009. Pseudomonas aeruginosa genotype prevalence in Dutch cystic fibrosis patients and age dependency of colonization by various P. aeruginosa sequence types. J. Clin. Microbiol. 47:4096–4101.
12. Waine DJ, Honeybourne D, Smith EG, Whitehouse JL, Dowson CG. 2009. Cross-sectional and longitudinal multilocus sequence typing of Pseudomonas aeruginosa in cystic fibrosis sputum samples. J. Clin. Microbiol. 47:3444–3448.
13. Woodford N, Turton JF, Livermore DM. 2011. Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol. Rev. 35:736–755.
14. Yang L, et al. 2011. Evolutionary dynamics of bacteria in a human host environment. Proc. Natl. Acad. Sci. U. S. A. 108:7481–7486.


ua40317
-->