LA APTITUD AEROBICA ESTA DETERIORADA EN LAS NIÑAS PREPUBERES CON DIABETES TIPO 1

LA APTITUD AEROBICA ESTA DETERIORADA EN LAS NIÑAS PREPUBERES CON DIABETES TIPO 1

(especial para SIIC © Derechos reservados)
La aptitud aeróbica disminuye progresivamente desde la infancia hasta la pubertad tardía en las niñas con diabetes tipo 1 probablemente como resultado de una disfunción metabólica inducida por la enfermedad pero también por cambios en el estilo de vida.
heyman9.jpg Autor:
Elsa Heyman
Columnista Experto de SIIC

Institución:
Vrije Universiteit Brussel


Artículos publicados por Elsa Heyman
Coautor
Phanélie Berthon* 
(ScD), University of Rennes 2, Rennes, Francia*
Recepción del artículo
15 de Mayo, 2007
Aprobación
4 de Junio, 2007
Primera edición
13 de Mayo, 2008
Segunda edición, ampliada y corregida
7 de Junio, 2021

Resumen
La aptitud aeróbica se considera beneficiosa para la salud general y la calidad de vida de todo individuo. Es muy importante cuantificar la aptitud aeróbica en los individuos jóvenes que sufren una enfermedad crónica, como la diabetes mellitus tipo 1 (DBT1). La investigación sobre la aptitud aeróbica en jóvenes con DBT1 ha producido resultados contradictorios, posiblemente por la inclusión de grupos de edad y estadios de maduración demasiado grandes, así como por el uso de distintos índices de aptitud aeróbica. En un estudio preliminar que incluyó varones prepúberes con DBT1 y controles sanos apareados por estadio de maduración, apreciamos una aptitud aeróbica normal en los pacientes, que realizaban apropiadamente ejercicios regulares y tenían un control adecuado de la glucemia. En este artículo presentamos las ventajas potenciales del método PWC170 para evaluar la aptitud aeróbica. Entonces, con el uso de este índice observamos una aptitud aeróbica normal en varones prepúberes con DBT1, mientras que estaba deteriorada en las niñas prepúberes con DBT1. Esta brecha en la aptitud aeróbica entre las niñas con DBT1 y las niñas sanas se hace incluso más pronunciada con la maduración puberal. Finalmente, explicamos el papel de factores como el control glucémico prolongado, el aumento de la masa grasa y la inactividad física, que podrían estar involucrados en la disminución de la aptitud aeróbica con la pubertad en niñas con DBT1.

Palabras clave
diabetes tipo 1, actividad aeróbica, niñez, pubertad, actividad física


Artículo completo

(castellano)
Extensión:  +/-7.87 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
Aerobic fitness is regarded as beneficial for everyone's overall health and quality-of-life. It is so important to quantify aerobic fitness in young people suffering from chronic disease, such as type 1 diabetes mellitus (T1DM). Research on aerobic fitness in young T1DM subjects has produced conflicting results, possibly because of inclusion of too large panels of ages and maturation stages as well as the use of various indexes of aerobic fitness. In a preliminary study including T1DM prepubertal boys and maturation-stage-matched healthy controls, we evidenced a normal aerobic fitness in the patients, who were appropriately involved in regular exercise and had a fair glycaemic control. In the present paper we present potential advantages of PWC170 to assess aerobic fitness. Then, using this index we highlight a normal aerobic fitness in prepubertal T1DM boys, whereas it is impaired in prepubertal T1DM girls. This gap in aerobic fitness between T1DM and healthy girls is getting even more marked with pubertal maturation. Ultimately, we discuss the role of factors like long term glycaemic control, fat mass gain and physical inactivity, which could be involved in the decrease in aerobic fitness with puberty in T1DM girls.

Key words
type 1 diabetes, aerobic fitness, childhood, puberty, physical activity


Full text
(english)
para suscriptores/ assinantes

Clasificación en siicsalud
Artículos originales > Expertos del Mundo >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Medicina Deportiva
Relacionadas: Diabetología, Endocrinología y Metabolismo, Medicina Interna, Pediatría



Comprar este artículo
Extensión: 7.87 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Enviar correspondencia a:
Elsa Heyman, Vrije Universiteit Brussel Department of Human Physiology & Sports medicine, B-1050, Pleinlaan 2, Bruselas, Bélgica
Bibliografía del artículo
1. Heyman E, Briard D, Gratas-Delamarche A, Delamarche P, De Kerdanet M. Normal physical working capacity in prepubertal children with type 1 diabetes compared with healthy controls. Acta Paediatr 94(10):1389-1394, 2005.
2. Jakober B, Schmulling RM, Eggstein M. Carbohydrate and lipid metabolism in type I diabetics during exhaustive exercise. Int J Sports Med 4(2):104-108, 1983.
3. Kremser CB, Levitt NS, Borow KM, et al. Oxygen uptake kinetics during exercise in diabetic neuropathy. J Appl Physiol 65(6):2665-2671, 1988.
4. Niranjan V, McBrayer DG, Ramirez LC, Raskin P, Hsia CC. Glycemic control and cardiopulmonary function in patients with insulin-dependent diabetes mellitus. Am J Med 103(6):504-513, 1997.
5. Nordgren H, Freyschuss U, Persson B. Blood pressure response to physical exercise in healthy adolescents and adolescents with insulin-dependent diabetes mellitus. Clin Sci (Lond) 86(4):425-432, 1994.
6. Poortmans JR, Saerens P, Edelman R, Vertongen F, Dorchy H. Influence of the degree of metabolic control on physical fitness in type I diabetic adolescents. Int J Sports Med 7(4):232-235, 1986.
7. Veves A, Saouaf R, Donaghue VM, et al. Aerobic exercise capacity remains normal despite impaired endothelial function in the micro- and macrocirculation of physically active IDDM patients. Diabetes 46(11):1846-1852, 1997.
8. Hilsted J, Galbo H, Christensen NJ. Impaired cardiovascular responses to graded exercise in diabetic autonomic neuropathy. Diabetes 28(4):313-319, 1979.
9. Wanke T, Formanek D, Auinger M, Zwick H, Irsigler K. Pulmonary gas exchange and oxygen uptake during exercise in patients with type 1 diabetes mellitus. Diabet Med 9(3):252-257, 1992.
10. Bussau VA, Ferreira LD, Jones TW, Fournier PA. The 10-s maximal sprint: a novel approach to counter an exercise-mediated fall in glycemia in individuals with type 1 diabetes. Diabetes Care 29(3):601-606, 2006.
11. Hagan RD, Marks JF, Warren PA. Physiologic responses of juvenile-onset diabetic boys to muscular work. Diabetes 28(12):1114-1119, 1979.
12. Cole RA, Benedict GW, Margolis S, Kowarski A. Blood glucose monitoring in symptomatic hypoglycemia. Diabetes 25:984-7, 1976.
13. Morris AD, Boyle DI, McMahon AD, Greene SA, MacDonald TM, Newton RW. Adherence to insulin treatment, glycaemic control, and ketoacidosis in insulin-dependent diabetes mellitus. The DARTS/MEMO Collaboration. Diabetes Audit and Research in Tayside Scotland. Medicines Monitoring Unit. Lancet 350:1505-10, 1997.
14. Dorchy H. Sports and type I diabetes: personal experience. Rev Med Brux 23:A211-7, 2002.
15. Bengtsson E. The working capacity in normal children, evaluated by submaximal exercise on the bicycle ergometer and compared with adults. Acta Med Scand 154(2):91-109, 1956.
16. Rowland TW, Rambusch JM, Staab JS, Unnithan VB, Siconolfi SF. Accuracy of physical working capacity (PWC170) in estimating aerobic fitness in children. J Sports Med Phys Fitness 33:184-8, 1993.
17. Corbin C. Relationships between physical working capacity and running performances of young boys. Res Q 12:187-93, 1971.
18. Vaccaro P, Clarke D. Cardiorespiratory alterations in 9- to 11-year-old children following a season of competitive swimming. Med Sci Sports 10:204-7, 1978.
19. Binkhorst RA, Saris WHM, Noerdeloos AM, Van't Hof MA, De Haan AFJ. Maximal oxygen consumption of children (6 to 18 years) predicted from maximal and submaximal values in treadmill and bicycle tests. In: Rutenfranz J, Moullin R, Klimt F, editors. Children and exercise XII. Champaigne, IL. Human Kinetics Publishers, pp. 227-32, 1986.
20. Boreham C, Paliczka V, Nichols A. A comparison of the PWC170 and 10-MST tests of aerobic fitness in adolescent schoolchildren. J Sports Med Phys Fitness 30:19-23, 1990.
21. Sterky G. Physical work capacity of diabetic schoolchildren. Acta Paediatr Scand 52:1-10, 1963.
22. Thoren C. Exercise testing with special reference to children with diabetes mellitus. Acta Paediatr Scand Suppl 283:29-32, 1980.
23. Hebbelinck M, Loeb H, Meersseman H. Physical development and performance capacity in a group of diabetic children and adolescents. Acta Paediatr Belg Suppl 28:151-61, 1974.
24. Hilsted J, Galbo H, Christensen NJ. Cardiovascular, hormonal and metabolic responses to graded exercise in juvenile diabetics with and without autonomic neuropathy. Acta Paediatr Scand Suppl 283:95-100, 1980.
25. Nordwall M, Hyllienmark L, Ludvigsson J. Early diabetic complications in a population of young patients with type 1 diabetes mellitus despite intensive treatment. J Pediatr Endocrinol Metab 19(1):45-54, 2006.
26. Baraldi E, Monciotti C, Filippone M, et al. Gas exchange during exercise in diabetic children. Pediatr Pulmonol 13(3):155-160, 1992.
27. Baran D, Dorchy H. [Physical fitness in diabetic adolescents (author's transl)]. Bull Eur Physiopathol Respir 18(1):51-58, 1982.
28. Baum VC, Levitsky LL, Englander RM. Abnormal cardiac function after exercise in insulin-dependent diabetic children and adolescents. Diabetes Care 10(3):319-323, 1987.
29. Elo O, Hirvonen L, Peltonen T, Vaelimaeki I. Physical Working Capacity of Normal and Diabetic Children. Ann Paediatr Fenn 11:25-31, 1965.
30. Hermansson G, Ludvigsson J. Renal function and blood-pressure reaction during exercise in diabetic and non-diabetic children and adolescents. A pilot study. Acta Paediatr Scand Suppl 283:86-94, 1980.
31. Huttunen NP, Kaar ML, Knip M, Mustonen A, Puukka R, Akerblom HK. Physical fitness of children and adolescents with insulin-dependent diabetes mellitus. Ann Clin Res 16(1):1-5, 1984.
32. Larsson YA, Sterky GC, Ekengren KE, Moller TG. Physical fitness and the influence of training in diabetic adolescent girls. Diabetes 11:109-117, 1962.
33. Rowland TW, Cunningham LN. Oxygen uptake plateau during maximal treadmill exercise in children. Chest 101(2):485-489, 1992.
34. Larsson Y, Persson B, Sterky G, Thoren C. Functional Adaptation to Rigorous Training and Exercise in Diabetic and Nondiabetic Adolescents. J Appl Physiol 19:629-635, 1964.
35. Austin A, Warty V, Janosky J, Arslanian S. The relationship of physical fitness to lipid and lipoprotein(a) levels in adolescents with IDDM. Diabetes Care 16(2):421-425, 1993.
36. Arslanian S, Nixon PA, Becker D, Drash AL. Impact of physical fitness and glycemic control on in vivo insulin action in adolescents with IDDM. Diabetes Care 13(1):9-15, 1990.
37. Faulkner MS, Quinn L, Rimmer JH, Rich BH. Cardiovascular endurance and heart rate variability in adolescents with type 1 or type 2 diabetes. Biol Res Nurs 7(1):16-29, 2005.
38. Komatsu WR, Gabbay MA, Castro ML, et al. Aerobic exercise capacity in normal adolescents and those with type 1 diabetes mellitus. Pediatr Diabetes 6(3):145-149, 2005.
39. Heyman E, Delamarche P, Berthon P, Meeusen R, Briard D, Vincent S, DeKerdanet M, Gratas-Delamarche A. Alteration in sympathoadrenergic response to intense exercise despite normal aerobic fitness in late pubertal adolescent girls with Type 1 diabetes. In revision in Diabetes & Metabolism.
40. Heyman E, Briard D, Dekerdanet M, Gratas-Delamarche A, Delamarche P. Accuracy of physical working capacity 170 to estimate aerobic fitness in prepubertal diabetic boys and in 2 insulin dose conditions. J Sports Med Phys Fitness 46(2):315-321, 2006.
41. Arslanian SA, Heil BV, Becker DJ, Drash AL. Sexual dimorphism in insulin sensitivity in adolescents with insulin-dependent diabetes mellitus. J Clin Endocrinol Metab 72(4):920-926, 1991.
42. Ahmed ML, Ong KK, Watts AP, Morrell DJ, Preece MA, Dunger DB. Elevated leptin levels are associated with excess gains in fat mass in girls, but not boys, with type 1 diabetes: longitudinal study during adolescence. J Clin Endocrinol Metab 86(3):1188-1193, 2001.
43. Barkai L, Peja M, Vamosi I. Physical work capacity in diabetic children and adolescents with and without cardiovascular autonomic dysfunction. Diabet Med 13(3):254-8, 1996.
44. Ludvigsson J. Physical exercise in relation to degree of metabolic control in juvenile diabetics. Acta Paediatr Scand Suppl 283:45-49, 1980.
45. Tylleskar K, Tuvemo T, Gustafsson J. Diabetes control deteriorates in girls at cessation of growth: relationship with body mass index. Diabet Med 18(10):811-815, 2001.
46. Gregory JW, Wilson AC, Greene SA. Body fat and overweight among children and adolescents with diabetes mellitus. Diabet Med 9(4):344-348, 1992.
47. Sarnblad S, Ekelund U, Aman J. Physical activity and energy intake in adolescent girls with Type 1 diabetes. Diabet Med 22(7):893-899, 2005.
48. Heyman E, Toutain C, Delamarche P, Berthon P, Briard D, Youssef H, DeKerdanet M, Gratas-Delamarche A. Exercise training and cardiovascular risk factors in type 1 diabetic adolescent girls. Pediatr Exerc Sci. In press (November 2007).
49. Sideraviciute S, Gailiuniene A, Visagurskiene K, Vizbaraite D. The effect of long-term swimming program on glycemia control in 14-19-year aged healthy girls and girls with type 1 diabetes mellitus. Medicina (Kaunas) 42(6):513-518, 2006.
50. Fontvieille AM, Kriska A, Ravussin E. Decreased physical activity in Pima Indian compared with Caucasian children. Int J Obes Relat Metab Disord 17(8):445-452, 1993.
51. Ainsworth BE, Haskell WL, Leon AS, et al. Compendium of physical activities: classification of energy costs of human physical activities. Med Sci Sports Exerc 25(1):71-80, 1993.
52. Slaughter MH, Lohman TG, Boileau RA, et al. Skinfold equations for estimation of body fatness in children and youth. Hum Biol 60(5):709-723, 1988.

 
 
 
 
 
 
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
ua31618