ADOLESCENCIA: PERIODO DE INTENSO CRECIMIENTO OSEO

ADOLESCENCIA: PERIODO DE INTENSO CRECIMIENTO OSEO

(especial para SIIC © Derechos reservados)
La adolescencia es un período de rápido crecimiento esquelético y una oportunidad para influir sobre la adquisición de masa ósea y el riesgo de osteoporosis en etapas tardías de la vida.
weaver.jpg Autor:
Connie M. Weaver
Columnista Experto de SIIC
Artículos publicados por Connie M. Weaver
Coautor
Cristina Palacios* 
PhD PreNatal Venezuela, Caracas, Venezuela*
Recepción del artículo
27 de Febrero, 2004
Aprobación
4 de Noviembre, 2030
Primera edición
17 de Septiembre, 2004
Segunda edición, ampliada y corregida
7 de Junio, 2021

Resumen
La adolescencia es un período de rápido crecimiento esquelético durante el cual se adquiere casi la mitad de la masa esquelética adulta. Este período de la vida es una oportunidad para influir sobre la masa ósea máxima y para reducir el riesgo de osteoporosis en etapas tardías de la vida. Los factores endocrinos que pueden tener acción sobre la masa ósea máxima incluyen el factor de crecimiento tipo insulina I (FCTI-I), que regula el crecimiento del esqueleto, y las hormonas gonadotróficas que estimulan la maduración epifisaria. La deficiencia estrogénica y la amenorrea pueden reducir la masa esquelética. El ejercicio en relación con el peso puede incrementar la masa ósea. La mineralización apropiada del esqueleto requiere una ingesta dietaria adecuada de minerales que participan en la formación de hidroxiapatita, entre los cuales el calcio es el que más probablemente sea insuficiente.

Palabras clave
Adolescencia, masa ósea máxima, calcio, actividad física


Artículo completo

(castellano)
Extensión:  +/-8.99 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
Adolescence is a period of rapid skeletal growth during which nearly half of the adult skeletal mass is accrued. This lifestage is a window of opportunity for influencing peak bone mass and reducing risk of osteoporosis later in life. Endocrine factors which may influence peak bone mass include IGF-I which regulates skeletal growth and gonadotropic hormones which stimulate epiphyseal maturation. Estrogen deficiency and amenorrhea can reduce skeletal mass. Weight bearing exercise can increase bone mass. Appropriate mineralization of the skeleton requires adequate dietary intakes of minerals involved in forming hydroxyapatite, of which the most likely to be deficient is calcium.


Full text
(english)
para suscriptores/ assinantes

Clasificación en siicsalud
Artículos originales > Expertos del Mundo >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Nutrición, Pediatría
Relacionadas: Endocrinología y Metabolismo, Medicina Deportiva, Medicina Interna, Osteoporosis y Osteopatías Médicas, Salud Pública



Comprar este artículo
Extensión: 8.99 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Bibliografía del artículo
  1. Gilsanz V, Skaggs DL, Kovanlikaya A et al. Differential effect of race on the axial and appendicular skeletons of children. J Clin Endocrinol Metab 1998; 83(5):1420-1427.
  2. Braun M, Martin BR, Kern M et al. Relationship of Calcium Intake and Calcium Retention in Adolescent Boys. Journal of Bone and Mineral Research 18, S104. 2003.
  3. Bailey DA, McKay HA, Mirwald RL et al. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the university of Saskatchewan bone mineral accrual study. J Bone Miner Res 1999; 14(10):1672-1679.
  4. Teegarden D, Proulx WR, Martin BR et al. Peak bone mass in young women. J Bone Miner Res 1995; 10(5):711-715.
  5. Kleerekoper M, Nelson DA, Peterson EL et al. Reference data for bone mass, calciotropic hormones, and biochemical markers of bone remodeling in older (55-75) postmenopausal white and black women. J Bone Miner Res 1994; 9(8):1267-1276.
  6. Van Coeverden SC, Netelenbos JC, de Ridder CM et al. Bone metabolism markers and bone mass in healthy pubertal boys and girls. Clin Endocrinol (Oxf) 2002; 57(1):107-116.
  7. Wastney ME, Ng J, Smith D et al. Differences in calcium kinetics between adolescent girls and young women. Am J Physiol 1996; 271(1 Pt 2):R208-R216.
  8. Weaver CM, Martin BR, Plawecki KL et al. Differences in calcium metabolism between adolescent and adult females. Am J Clin Nutr 1995; 61(3):577-581.
  9. Weaver CM, Peacock M, Martin BR et al. Calcium retention estimated from indicators of skeletal status in adolescent girls and young women. Am J Clin Nutr 1996; 64(1):67-70.
  10. Abrams SA. The relationship between magnesium and calcium kinetics in 9- to 14-year-old children. J Bone Miner Res 1998; 13(1):149-153.
  11. Bachrach LK, Hastie T, Wang MC et al. Bone mineral acquisition in healthy Asian, Hispanic, black, and Caucasian youth: a longitudinal study. J Clin Endocrinol Metab 1999; 84(12):4702-4712.
  12. Delemarre-van de Waal HA, van Coeverden SC, Rotteveel J. Hormonal determinants of pubertal growth. J Pediatr Endocrinol Metab 2001; 14 Suppl 6:1521-1526.
  13. Johansen JS, Riis BJ, Hassager C et al. The effect of a gonadotropin-releasing hormone agonist analog (nafarelin) on bone metabolism. J Clin Endocrinol Metab 1988; 67(4):701-706.
  14. Nielsen CT, Skakkebaek NE, Darling JA et al. Longitudinal study of testosterone and luteinizing hormone (LH) in relation to spermarche, pubic hair, height and sitting height in normal boys. Acta Endocrinol Suppl (Copenh) 1986; 279:98-106.
  15. Cutler GB, Jr. The role of estrogen in bone growth and maturation during childhood and adolescence. J Steroid Biochem Mol Biol 1997; 61(3-6):141-144.
  16. Blumsohn A, Hannon RA, Wrate R et al. Biochemical markers of bone turnover in girls during puberty. Clin Endocrinol (Oxf) 1994; 40(5):663-670.
  17. Egerbacher M, Helmreich M, Rossmanith W et al. Estrogen receptor-alpha and estrogen receptor-beta are present in the human growth plate in childhood and adolescence, in identical distribution. Horm Res 2002; 58(2):99-103.
  18. Zhang M, Xuan S, Bouxsein ML et al. Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. J Biol Chem 2002; 277(46):44005-44012.
  19. Yakar S, Rosen CJ. From mouse to man: redefining the role of insulin-like growth factor-I in the acquisition of bone mass. Exp Biol Med (Maywood ) 2003; 228(3):245-252.
  20. Tobiume H, Kanzaki S, Hida S et al. Serum bone alkaline phosphatase isoenzyme levels in normal children and children with growth hormone (GH) deficiency: a potential marker for bone formation and response to GH therapy. J Clin Endocrinol Metab 1997; 82(7):2056-2061.
  21. Yanovski JA, Sovik KN, Nguyen TT et al. Insulin-like growth factors and bone mineral density in African American and White girls. J Pediatr 2000; 137(6):826-832.
  22. Rigotti NA, Neer RM, Skates SJ et al. The clinical course of osteoporosis in anorexia nervosa. A longitudinal study of cortical bone mass. JAMA 1991; 265(9):1133-1138.
  23. Hartman D, Crisp A, Rooney B et al. Bone density of women who have recovered from anorexia nervosa. Int J Eat Disord 2000; 28(1):107-112.
  24. Cobb KL, Kelsey JL, Sidney S et al. Oral contraceptives and bone mineral density in white and black women in CARDIA. Coronary Risk Development in Young Adults. Osteoporos Int 2002; 13(11):893-900.
  25. Elgan C, Samsioe G, Dykes AK. Influence of smoking and oral contraceptives on bone mineral density and bone remodeling in young women: a 2-year study. Contraception 2003; 67(6):439-447.
  26. Weaver CM, Teegarden D, Lyle RM et al. Impact of exercise on bone health and contraindication of oral contraceptive use in young women. Med Sci Sports Exerc 2001; 33(6):873-880.
  27. Burr DB, Yoshikawa T, Teegarden D et al. Exercise and oral contraceptive use suppress the normal age-related increase in bone mass and strength of the femoral neck in women 18-31 years of age. Bone 2000; 27(6):855-863.
  28. Weaver CM, Peacock M, Johnston CC, Jr. Adolescent nutrition in the prevention of postmenopausal osteoporosis. J Clin Endocrinol Metab 1999; 84(6):1839-1843.
  29. Johnston CC, Jr., Miller JZ, Slemenda CW et al. Calcium supplementation and increases in bone mineral density in children. N Engl J Med 1992; 327(2):82-87.
  30. Lloyd T, Andon MB, Rollings N et al. Calcium supplementation and bone mineral density in adolescent girls. JAMA 1993; 270(7):841-844.
  31. Chan GM, Hoffman K, McMurry M. Effects of dairy products on bone and body composition in pubertal girls. J Pediatr 1995; 126(4):551-556.
  32. Bonjour JP, Carrie AL, Ferrari S et al. Calcium-enriched foods and bone mass growth in prepubertal girls: a randomized, double-blind, placebo-controlled trial. J Clin Invest 1997; 99(6):1287-1294.
  33. Cadogan J, Blumsohn A, Barker ME et al. A longitudinal study of bone gain in pubertal girls: anthropometric and biochemical correlates. J Bone Miner Res 1998; 13(10):1602-1612.
  34. Cadogan J, Eastell R, Jones N et al. Milk intake and bone mineral acquisition in adolescent girls: randomised, controlled intervention trial. BMJ 1997; 315(7118):1255-1260.
  35. Lee WT, Leung SS, Wang SH et al. Double-blind, controlled calcium supplementation and bone mineral accretion in children accustomed to a low-calcium diet. Am J Clin Nutr 1994; 60(5):744-750.
  36. Lee WT, Leung SS, Leung DM et al. A randomized double-blind controlled calcium supplementation trial, and bone and height acquisition in children. Br J Nutr 1995; 74(1):125-139.
  37. Dibba B, Prentice A, Ceesay M et al. Effect of calcium supplementation on bone mineral accretion in gambian children accustomed to a low-calcium diet. Am J Clin Nutr 2000; 71(2):544-549.
  38. Stear SJ, Prentice A, Jones SC et al. Effect of a calcium and exercise intervention on the bone mineral status of 16-18-y-old adolescent girls. Am J Clin Nutr 2003; 77(4):985-992.
  39. Wosje KS, Specker BL. Role of calcium in bone health during childhood. Nutr Rev 2000; 58(9):253-268.
  40. Lee WT, Leung SS, Leung DM et al. A follow-up study on the effects of calcium-supplement withdrawal and puberty on bone acquisition of children. Am J Clin Nutr 1996; 64(1):71-77.
  41. Slemenda CW, Peacock M, Hui S et al. Reduced rates of skeletal remodeling are associated with increased bone mineral density during the development of peak skeletal mass. J Bone Miner Res 1997; 12(4):676-682.
  42. Jackman LA, Millane SS, Martin BR et al. Calcium retention in relation to calcium intake and postmenarcheal age in adolescent females. Am J Clin Nutr 1997; 66(2):327-333.
  43. Calvo MS, Park YK. Changing phosphorus content of the U.S. diet: potential for adverse effects on bone. J Nutr 1996; 126(4 Suppl):1168S-1180S.
  44. Calvo MS, Kumar R, Heath H. Persistently elevated parathyroid hormone secretion and action in young women after four weeks of ingesting high phosphorus, low calcium diets. J Clin Endocrinol Metab 1990; 70(5):1334-1340.
  45. Barger-Lux MJ, Heaney RP, Lanspa SJ et al. An investigation of sources of variation in calcium absorption efficiency. J Clin Endocrinol Metab 1995; 80(2):406-411.
  46. McGartland C, Robson PJ, Murray L et al. Carbonated soft drink consumption and bone mineral density in adolescence: the Northern Ireland Young Hearts project. J Bone Miner Res 2003; 18(9):1563-1569.
  47. Aksnes L, Aarskog D. Plasma concentrations of vitamin D metabolites in puberty: effect of sexual maturation and implications for growth. J Clin Endocrinol Metab 1982; 55(1):94-101.
  48. Oliveri MB, Ladizesky M, Mautalen CA et al. Seasonal variations of 25 hydroxyvitamin D and parathyroid hormone in Ushuaia (Argentina), the southernmost city of the world. Bone Miner 1993; 20(1):99-108.
  49. Gannage-Yared MH, Tohme A, Halaby G. [Hypovitaminosis D: a major worldwide public health problem]. Presse Med 2001; 30(13):653-658.
  50. Standing Committee on the Scientific Evaluation of Dietary Reference Intake FaNB, Institute of Medicine. Magnesium. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. Washington, DC: National Academy Press, 1999: 190-249.
  51. Merrilees MJ, Smart EJ, Gilchrist NL et al. Effects of diary food supplements on bone mineral density in teenage girls. Eur J Nutr 2000; 39(6):256-262.
  52. Goulding A, Jones IE, Taylor RW et al. More broken bones: a 4-year double cohort study of young girls with and without distal forearm fractures. J Bone Miner Res 2000; 15(10):2011-2018.
  53. Rourke KM, Brehm BJ, Cassell C et al. Effect of weight change on bone mass in female adolescents. J Am Diet Assoc 2003; 103(3):369-372.
  54. Weaver CM. Calcium requirements of physically active people. Am J Clin Nutr 2000; 72(2 Suppl):579S-584S.
  55. Teegarden D, Proulx WR, Kern M et al. Previous physical activity relates to bone mineral measures in young women. Med Sci Sports Exerc 1996; 28(1):105-113.
  56. Kontulainen S, Kannus P, Haapasalo H et al. Good maintenance of exercise-induced bone gain with decreased training of female tennis and squash players: a prospective 5-year follow-up study of young and old starters and controls. J Bone Miner Res 2001; 16(2):195-201.
  57. Kannus P, Haapasalo H, Sankelo M et al. Effect of starting age of physical activity on bone mass in the dominant arm of tennis and squash players. Ann Intern Med 1995; 123(1):27-31.
  58. Fuchs RK, Bauer JJ, Snow CM. Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. J Bone Miner Res 2001; 16(1):148-156.
  59. Krall EA, Dawson-Hughes B. Smoking increases bone loss and decreases intestinal calcium absorption. J Bone Miner Res 1999; 14(2):215-220.
  60. Tobacco use among U.S. racial/ethnic minority groups--African Americans, American Indians and Alaska Natives, Asian Americans and Pacific Islanders, Hispanics. A Report of the Surgeon General. Executive summary. MMWR Recomm Rep 1998; 47(RR-18):v-16.
  61. Heaney RP, Abrams S, Dawson-Hughes B et al. Peak bone mass. Osteoporos Int 2000; 11(12):985-1009.
  62. Laitinen K, Lamberg-Allardt C, Tunninen R et al. Bone mineral density and abstention-induced changes in bone and mineral metabolism in noncirrhotic male alcoholics. Am J Med 1992; 93(6):642-650.

Título español
Resumen
 Palabras clave
 Bibliografía
 Artículo completo
(exclusivo a suscriptores)
 Autoevaluación
  Tema principal en SIIC Data Bases
 Especialidades

 English title
 Abstract
  Key words
Full text
(exclusivo a suscriptores)

Autor 
Artículos
Correspondencia

Patrocinio y reconocimiento
Imprimir esta página
 
 
 
 
 
 
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
ua31618