Conceptos Categóricos

RETRASO MENTAL AUTOSOMICO DOMINANTE

RETRASO MENTAL AUTOSOMICO DOMINANTE

(especial para SIIC © Derechos reservados)
El retraso mental de origen genético es etiológicamente heterogéneo y suele presentarse formando parte de cuadros clínicos más complejos.
Autor:
Irene Mademont-soler
Columnista Experto de SIIC

Institución:
Servei de Bioquímica i Genètica Molecular


Artículos publicados por Irene Mademont-soler
Coautores
Carme Morales Peydro* Aurora Sánchez Díaz* 
Servei de Bioquímica i Genètica Molecular, Barcelona, España*
Recepción del artículo
28 de Julio, 2008
Aprobación
15 de Septiembre, 2008
Primera edición
20 de Febrero, 2009
Segunda edición, ampliada y corregida
23 de Septiembre, 2010

Resumen
El retraso mental es una entidad clínica que se presenta con alta frecuencia en la población general y obedece a múltiples causas. El retraso mental de origen genético es etiológicamente heterogéneo y suele presentarse formando parte de cuadros clínicos más complejos. En la actualidad aún son pocos los genes conocidos asociados a este fenotipo, si bien para algunas enfermedades éstos están bien establecidos, como es el caso de la neurofibromatosis tipo 1, la esclerosis tuberosa y la distrofia miotónica de Steinert, todos ellos trastornos monogénicos de transmisión autosómica dominante causados por mutaciones en los genes NF1, TSC1 y TSC2, y DMPK, respectivamente. Estudios recientes están empezando a elucidar la patogénesis de estas enfermedades, sugiriendo así posibles dianas terapéuticas. Otra entidad que cursa con retraso mental autosómico dominante son los desequilibrios cromosómicos crípticos, que también acostumbran a asociarse a cuadros sindrómicos y que están empezando a ser diagnosticados actualmente gracias a las nuevas técnicas moleculares. En el presente trabajo se profundiza en el retraso mental que presenta un patrón de herencia autosómico dominante, con especial énfasis en las enfermedades neurofibromatosis tipo 1, esclerosis tuberosa y distrofia miotónica de Steinert, y en el causado por desequilibrios cromosómicos crípticos.

Palabras clave
retraso mental, neurofibromatosis tipo 1, esclerosis tuberosa, distrofia miotónica de Steinert, desequilibrios cromosómicos crípticos


Artículo completo

(castellano)
Extensión:  +/-6.93 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
Mental retardation is a frequent disorder related to multiple causes. Among the genetic ones, mental retardation is etiologically heterogeneous and usually linked to syndromic forms. There are still few known genes associated with this phenotype, although for some disorders they are well established. This is the case of neurofibromatosis 1, tuberous sclerosis, and Steinert myotonic dystrophy, which are caused by mutations in NF1, TSC1 and TSC2, and DMPK genes, respectively. All of them are monogenic disorders with an autosomal dominant mode of inheritance. Recent studies have elucidated the pathogenesis of these diseases, suggesting possible therapeutic targets. Another entity responsible for autosomal dominant mental retardation are cryptic imbalances, whose diagnosis is only possible at present with current molecular techniques. In this work we review mental retardation with an autosomal dominant mode of inheritance, with special emphasis on neurofibromatosis 1, tuberous sclerosis and Steinert myotonic dystrophy, and on cryptic imbalances.

Key words
mental retardation, neurofibromatosis 1, tuberous sclerosis, steinert myotonic dystrophy, cryptic imbalances


Clasificación en siicsalud
Artículos originales > Expertos de Iberoamérica >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Genética Humana
Relacionadas: Atención Primaria, Bioquímica, Diagnóstico por Laboratorio, Educación Médica, Medicina Familiar, Neurología, Pediatría, Salud Mental



Comprar este artículo
Extensión: 6.93 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Enviar correspondencia a:
Irene Mademont-Soler, Hospital Clínic de Barcelona Servei de Bioquímica i Genètica Molecular, 08028, C/Mejía Lequerica S/N, Edificio Helios III, Barcelona, España
Bibliografía del artículo

1. Curry CJ, Estevenson RE, Aughton D y col. Evaluation of mental retardation: Recommendations of a consensus conference. Am J Med Genet 72:468-477, 1997.
2. Basel-Vanagaite L. Genetics of autosomal recessive non-syndromic mental retardation: recent advances. Clin Genet; 72(3):167-74, 2007.
3. Van Karnebeek CDM, Jansweijer MCE, Leenders AGE, Offringa M, Hennekam. Diagnostic investigation in individuals with mental retardation: a systematic literature review of their usefulness. Eur J Hum Genet 13:6-25, 2005.
4. Rodríguez-Revenga L, Madrigal-Bajo I, Milà-Racasens M. Genetic mental retardation. Rev Neurol 43(Suppl 1):S181-6, 2003.
5. Flint J, Knight S. The use of telomere probes to investigate submicroscopic rearrangements associated with mental retardation. Curr Opin Genet Dev 13(3):310-6, 2003.
6. Raymond FL, Tarpey P. The genetics of mental retardation. Hum Mol Genet 15(Spec No 2):R110-6, 2006.
7. Rehder H, Fritz B. Genetic causes of mental retardation. Wien Med Wochenschr 155:248-267, 2005.
8. Migaud M, Charlesworth P, Dempster M y col. Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein. Nature 396(6710):433-9, 1998.
9. Zahir F, Friedman JM. The impact of array genomic hybridization on mental retardation research: a review of current technologies and their clinical utility. Clin Genet 72(4):271-87, 2007.
10. Lee MJ, Stephenson DA. Recent developments in neurofibromatosis type 1. Curr Opin Neurol 20(2):135-41, 2007.
11. Ozonoff S. Cognitive impairment in neurofibromatosis type 1. Am J Med Genet 89:45-52, 1999.
12. Radtke HB, Sebold CD, Allison C, Haidle JL, Schneider G. Neurofibromatosis type 1 in genetic counseling practice: recommendations of the National Society of Genetic Counselors. J Genet Couns 16(4):387-407, 2007.
13. Huson SM, Hughes RAC. The neurofibromatoses: a pathogenetic and clinical overview. Chapman & Hall Medical, London 1994.
14. Huson SM, Harper PS, Compston DA. Von Recklinghausen neurofibromatosis. A clinical and population study in south-east Wales. Brain 111:1355-1381, 1988.
15. Riccarddi VM. Neurofibromatosis: phenotype, natural history and pathogenesis. Johns Hopkins University Press, Baltimore, 1992.
16. Ferner RE. Neurofibromatosis 1. Eur J Hum Genet 15(2):131-8, 2007.
17. Moore BD, Slopis JM, Schomer D, Jackson EF, Levy BM. Neuropsychological significance of areas of high signal intensity on brain MRIs of children with neurofibromatosis. Neurology 46:1660-1668, 1996.
18. Ferner RE, Huson SM, Thomas N y col. Guidelines for the diagnosis and management of individuals with neurofibromatosis 1. J Med Genet 44(2):81-8, 2007.
19. Schindeler A, Little DG. Recent insights into bone development, homeostasis, and repair in type 1 neurofibromatosis (NF1). Bone 42(4):616-22, 2008.
20. Grisart B, Rack K, Vidrequin S y col. NF1 microduplication first clinical report: association with mild mental retardation, early onset of baldness and dental enamel hypoplasia? Eur J Hum Genet 16(3):305-11, 2008.
21. Dorschner MO, Sybert VP, Weaver M, Pletcher BA, Stephens K. NF1 microdeletion breakpoints are clustered at flanking repetitive sequences. Hum Mol Genet 9:35-46, 2000.
22. Mulvihill JJ. Neurofibromatosis. A genetic epidemiologist's point of view. Ann N Y Acad Sci 486:38-44, 1986.
23. Cawthon RM, Weiss R, Xu GF y col. A major segment of the neurofibromatosis type 1 gene: cDNA sequence, genomic structure, and point mutations. Cell 62:193-201, 1990.
24. Viskochil D, Buchberg AM, Xu G y col. Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type 1 locus. Cell 62:187-192, 1990.
25. Wallace MR, Andersen LB, Saulino AM, Gregory PE, Glover TW, Collins FS. A de novo Alu insertion results in neurofibromatosis type 1. Nature 353:864-866, 1991.
26. Yohay KH. The genetic and molecular pathogenesis of NF1 and NF2. Semin Pediatr Neurol 13(1):21-6, 2006.
27. Ferner RE. Neurofibromatosis 1 and neurofibromatosis 2: a twenty first century perspective. Lancet Neurol 6(4):340-51, 2007.
28. Costa RM, Silva AJ. Molecular and cellular mechanisms underlying the cognitive deficits associated with neurofibromatosis 1. J Child Neurol 17:622-626, 2002.
29. Hsueh YP. Neurofibromin signaling and synapses. J Biomed Sci 14(4):461-6, 2007.
30. Holmes GL, Stafstrom CE; Tuberous Sclerosis Study Group. Tuberous sclerosis complex and epilepsy: recent developments and future challenges. Epilepsia 48(4):617-30, 2007.
31. Sampson JR. TSC1 and TSC2: genes that are mutated in the human genetic disorder tuberous sclerosis. Bioch Soc Transac 31:592-596, 2003.
32. Schwartz RA, Fernández G, Kotulska K, Jó?wiak S.Tuberous sclerosis complex: advances in diagnosis, genetics, and management. J Am Acad Dermatol 57(2):189-202, 2007.
33. Leung AK, Robson WL. Tuberous sclerosis complex: a review. J Pediatr Health Care 21(2):108-14, 2007.
34. Bernstein J. Renal cystic disease in tuberous sclerosis complex. Pediatr Nephrol 7:490-495, 1993.
35. Moss J, Avila NA, Barnes PM y col. Prevalence and clinical characteristics of lymphangioleiomyomatosis (LAM) in patients with tuberous sclerosis complex. Am J Respir Crit Care Med 163:669-671, 2001.
36. Fryer AE, Chalmers A, Connor JM y col. Evidence that the gene for tuberous sclerosis is on chromosome 9. Lancet I:659-661, 1987.
37. Kandt RS, Haines JL, Smith M y col. Linkage of an important gene locus for tuberous sclerosis to a chomosome 16 marker for polycystic kidney disease. Nat Genet 2:37-41, 1992.
38. Cheadle JP, Reeve MP, Sampson JR, Kwiatkowski DJ. Molecular genetic advances in tuberous sclerosis. Hum Genet 107:97-114, 2000.
39. Yates JR. Tuberous sclerosis. Eur J Hum Genet 14(10):1065-73, 2006.
40. Sampson JR, Maheshwar MM, Aspinwall R y col. Renal cystic disease in tuberous sclerosis: role of the polycystic kidney disease 1 gene. Am J Hum Genet 61:843-851, 1997.
41. Van Slegtenhorst M, De Hoogt R, Hermans C y col. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 77:805-808, 1997.
42. Carbonara C, Longa L, Grosso E y col. Apparent preferential loss of heterozygosity at TSC2 over TSC1 chromosomal regions in tuberous sclerosis hamartomas. Genes Chromosom Cancer 15:18-25, 1996.
43. De Vries PJ, Howe CJ. The tuberous sclerosis complex proteins--a GRIPP on cognition and neurodevelopment. Trends Mol Med 13(8):319-26, 2007.
44. Meikle L, Pollizzi K, Egnor A y col. Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin (mTOR) inhibitors: effects on mTORC1 and Akt signaling lead to improved survival and function. J Neurosci 28(21):5422-32, 2008.
45. Ehninger D, Han S, Shilyansky C y col. Reversal of learning deficits in a Tsc2(+/-) mouse model of tuberous sclerosis. Nat Med [Epub ahead of print] 2008.
46. Franz DN, Leonard J, Tudor C y col. Rapamycin causes regression of astrocytomas in tuberous sclerosis complex. Ann Neurol 59(3):490-8, 2006.
47. Meola G. Clinical and genetic heterogeneity in myotonic dystrophies. Muscle Nerve 23:1789-1799, 2000.
48. Schara U, Schoser BG. Myotonic dystrophies type 1 and 2: a summary on current aspects. Semin Pediatr Neurol 13(2):71-9, 2006.
49. Brook JD, McCurrach ME, Harley HG y col. Molecular basis of myotonic dystrophy: expansion of trinucleotide (CTG) repeat at the 3' end of a transcription encoding a protein kinase family member. Cell 68:799-808, 1992.
50. Harley HG, Rundle SA, MacMillan JC y col. Size of the unstable CTG repeat sequence in relation to phenotype and parental transmission in myotonic dystrophy. Am J Hum Genet 52:1164-1174, 1993.
51. Hamshere MG, Harley H, Harper P, Brook JD, Brookfield JF. Myotonic dystrophy: the correlation of (CTG) repeat length in leucocytes with age at onset is significant only for patients with small expansions. J Med Genet 36:59-61, 1999.
52. Ashizawa T, Dubel JR, Harati Y. Somatic instability of CTG repeat in myotonic dystrophy. Neurology 43:2674-2678, 1993.
53. Monckton DG, Wong LJ, Ashizawa T, Caskey CT. Somatic mosaicism, germline expansions, germline reversions and intergenerational reductions in myotonic distrophy males: small pool PCR. Hum Mol Genet 4:1-8, 1995.
54. Gatchel JR, Zoghbi HY. Diseases of unstable repeat expansion: mechanisms and common principles. Nat Rev Genet 6(10):743-55, 2005.
55. Cho DH, Tapscott SJ. Myotonic dystrophy: emerging mechanisms for DM1 and DM2. Biochim Biophys Acta 1772(2):195-204, 2007.
56. Perez E, Sullivan KE. Chromosome 22q11.2 deletion syndrome (DiGeorge and velocardiofacial syndromes). Curr Opin Pediatr 14(6):678-83, 2002.
57. Hay BN. Deletion 22q11: spectrum of associated disorders. Semin Pediatr Neurol 14(3):136-9, 2007.
58. Greenberg F. DiGeorge syndrome: an historical review of clinical and cytogenetic features. J Med Genet 30(10):803-6, 1993.
59. Dodson WE, Alexander D, Al-Aish M, De la Cruz F. The DiGeorge syndrome. Lancet 1(7594):574-5, 1969.
60. Knight SJ, Regan R, Nicod A y col. Subtle chromosomal rearrangements in children with unexplained mental retardation. Lancet 354:1676-1681, 1999.
61. Slavotinek A, Rosenberg M, Knight S y col. Screening for submicroscopic chromosome rearrangements in children with idiopathic mental retardation using microsatellite markers for the chromosome telomeres. J Med Genet 36:405-411, 1999.
62. Ravnan JB, Tepperberg JH, Papenhausen P y col. Subtelomere FISH analysis of 11 688 cases: an evaluation of the frequency and pattern of subtelomere rearrangements in individuals with developmental disabilities. J Med Genet 43:478-489, 2006.
63. Krepischi-Santos AC, Vianna-Morgante AM, Jehee FS y col. Whole-genome array-CGH screening in undiagnosed syndromic patients: old syndromes revisited and new alterations. Cytogenet Genome Res 115(3-4):254-61, 2006.
64. Friedman JM, Baross A, Delaney AD y col. Oligonucleotide microarray analysis of genomic imbalance in children with mental retardation. Am J Hum Genet 79(3):500-13, 2006.
65. Menten B, Maas N, Thienpont B y col. Emerging patterns of cryptic chromosomal imbalance in patients with idiopathic mental retardation and multiple congenital anomalies: a new series of 140 patients and review of published reports. J Med Genet 43(8):625-33, 2006.
66. Miyake N, Shimokawa O, Harada N y col. BAC array CGH reveals genomic aberrations in idiopathic mental retardation. Am J Med Genet A 140(3):205-11, 2006.
67. Rosenberg C, Knijnenburg J, Bakker E y col. Array-CGH detection of micro rearrangements in mentally retarded individuals: clinical significance of imbalances present both in affected children and normal parents. J Med Genet 43(2):180-6, 2006.
68. De Vries BB, Pfundt R, Leisink M y col. Diagnostic genome profiling in mental retardation. Am J Hum Genet 77(4):606-16, 2005.
69. Shaw-Smith C, Redon R, Rickman L y col. Microarray based comparative genomic hybridisation (array-CGH) detects submicroscopic chromosomal deletions and duplications in patients with learning disability/mental retardation and dysmorphic features. J Med Genet 41(4):241-8, 2004.
70. Vissers LE, De Vries BB, Osoegawa K y col. Array-based comparative genomic hybridization for the genomewide detection of submicroscopic chromosomal abnormalities. Am J Hum Genet 73(6):1261-70, 2003.
71. Schoumans J, Ruivenkamp C, Holmberg E, Kyllerman M, Anderlid BM, Nordenskjöld M. Detection of chromosomal imbalances in children with idiopathic mental retardation by array based comparative genomic hybridisation (array-CGH). J Med Genet 42(9):699-705, 2005.
72. Tyson C, Harvard C, Locker R y col. Submicroscopic deletions and duplications in individuals with intellectual disability detected by array-CGH. Am J Med Genet A 139(3):173-85, 2005.

 
 
 
 
 
 
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
ua31618